jax

Benchmarking:
“You're @oing It Wmng

Aysylu Greenberg

@aysylu22
October 2015

Google

Aysylu Greenberg

@aysylu2?2

‘B'EIIGIIMAIII(IIIE

To Write Good Benchmarks...

HTML C

5 b

Benchmark = How Fast?

your process vs goal
your process vs best practices

Today

i .l....nnllwuﬁp =

b i ——

e T e Tl
=

P A=A
el
Ere———ry Yyt

L]
J 1 H
l'- s*= -
it T}

2E i] FIF |2

1

-
AL,
-
£ -
X
— —~ s
s I
-
<
- '

/
{ =T

I,

How Not to Write Benchmarks
Benchmark Setup & Results:

— You're wrong about machines

— You're wrong about stats

— You're wrong about what matters

* Becoming Less Wrong

HOW NOT TO WRITE BENCHMARKS | |/ll|

Website Serving Images

Access 1 image 1000 times
Latency measured for each access
Start measuring immediately

3 runs

Find mean

Dev environment

Web Request

l

Server

/

Cache

EVERYTHING YOU KNOW/IS

WHAT’S WRONG WIT
BENCHMARK?

H THIS

memegenerator.nél;

oo e o SRR ST D
.....

o
—
©
@
=
@
£
®©
@
X
o
=

(=
—
s
-
=
==
o
=
~
—
=
=

YOU’

Wrong About the Machine

e Cache, cache, cache, cache!

It’s Caches All The Way Down

Server

Web Request

It’s Caches All The Way Down

32k L1 |-cachel 32k L1 I-cache } 32k L1 |-cachel 32k L1 |-cache

| data ¥ mst

data + inst, data +inst. || Data+inst

8 MB L3 cache

For all applications Inclusive cache policy to
to share minimize traffic from snoops

Prefetching: Program

for(rep=0; rep < REP; rep++)
for(a=0;a < N ;a++)
A[a] =A[a] *+ |;

0.0004

0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

0.00005

Prefetching: Disabled

L1 L2 Mem
| A A
| | | ¥ | 1
8 32 128 512 2048 8192 32768 131072
N

© Saman Amarasinghe 2009

0.0000045

0.000004

0.0000035

0.000003

0.0000025

0.000002

0.0000015

0.000001

0.0000005

Prefetching: Enabled

20000 40000

© Saman Amarasinghe 2009

T

60000

N

80000

100000

120000

140000

G. F. Handel: Pat

Prof. Saman Amarasinghe, MIT 2009

1E+10

9E+09

8E+09

7E+09

6E+09

5E+09

4E+09

3E+09

2E+09

1E+09

Caches in Benchmarks

===pPcorformance

Caches in Benchmarks

Prof. Saman Amarasinghe, MIT 2009

1E+10 -

9E+09

8E+09 - .
%1 Cache Miss
7E+09 -
6E+09 -
*E09 ===parformance I
4E+09
3E+09 -

2E+09

1E+09

0

Caches in Benchmarks

Prof. Saman Amarasinghe, MIT 2009

1E+10

9E+09 -

8E+09 -

7E+09 -

6E+09 -

5E+09 -

4E+09 -

3E+09 -

2E+09 -

1E+09

0

-#-11 Cache Miss

-o-L2 Cache Miss

===Pecrformance

Caches in Benchmarks

Prof. Saman Amarasinghe, MIT 2009
1E+10 1

9E+09 -

-#-11 Cache Miss

8E+09 -

7E+09 1 =o=.2 Cache Miss
6E+09 -
=<3 Cache Miss I
S5E+09 -
AE+09 - ===Deorformance

3E+09 -

2E+09 -

1E+09 -

0

Caches in Benchmarks

Prof. Saman Amarasinghe, MIT 2009

1E+10 1

9E+09

8E+09

7E+09 -

6E+09

5E+09 -

4E+09 -

3E+09

2E+09 -

1E+09

0

%11 Cache Miss
-o-L2 Cache Miss I
=<L3 Cache Miss

—TLB misses

===pPorformance

Website Serving Images

x Access 1 image 1000 times Web Request
* Latency measured for each access l

e Start measuring immediately

Server

e 3runs

* Find mean /

e Dev environment Cache

Wrong About the Machine

e Cache, cache, cache, cachel
* Warmup & timing

Website Serving Images

x Access 1 image 1000 times Web Request
* Latency measured for each access l
xStart measuring immediately cerver
* 3runs

* Find mean /

e Dev environment Cache

Wrong About the Machine

e Cache, cache, cache, cachel
* Warmup & timing
* Periodic interference

Periodic Interference

3'000 MB -

- “\._Qk@‘m(€

T\w@"‘ca
-

2'S00 MB 4

el
\zt»\@"‘(€
o€

2'000 MB - \ ‘ ‘ X \

| \ ‘
1'S00 MB - \ |

1'000 MB -

S00 MB A

0 MB

10:12 10:14 10:16

Periodic Interference

3'000 MB -

-

2'S00 MB 4

2'000 MB +

1'S00 MB - \

1'000 MB -

S00 MB A

0 MB

10:12 10:14 10:16

Website Serving Images

%Access 1 image 1000 times Web Request
Latency measured for each access l
xStart measuring immediately cerver

* 3runs

* Find mean /

e Dev environment Cache

Wrong About the Machine

b
e
O
O
o
)
e
O
O
o
U
L
O
O
o
)
e
O
©
O
L

* Warmup & timing

 Periodic interference

e Test |= Prod

Website Serving Images

%Access 1 image 1000 times Web Request
Latency measured for each access l
XStart measuring immediately cerver

* 3runs

* Find mean /

XDev environment Cache

Wrong About the Machine

b
e
O
O
o
)
e
O
O
o
U
L
O
O
o
)
e
O
©
O
L

* Warmup & timing

 Periodic interference

e Test |=Prod

* Power mode changes

Power Modes

$ cat /sys/devices/system/cpu/*/cpufreq/scaling_governor
“ondemand” OR “performance”

Current CPU frequencies:
$ grep "MHz" /proc/cpuinfo

T USED T© THINK
CORRELATION MPUED
CAVSATION.

1

THEN I TOK A

STATISTICS CLASS.

NOwW I DON'T.

P9

YOU’'RE WRONG ABOUT THE STATS §

Wrong About Stats

* Too few samples

Convergence of Median on Samples

120

¢ Stable Samples
@ Stable Median

) -) Decaying Samples
><><

< Decaying Median

0 10 20 30 40 o "

Runs

Website Serving Images

Access 1 image 1000 times Web Request
Latency measured for each access l

xStart measuring immediately cerver

x3 runs /

* Find mean

XDev machine Cache

Wrong About Stats

wm
@
Q.
&
(qo]
(Vg
=
Q
Y
O
O
T
°

e Gaussian (not)

Website Serving Images

Access 1 image 1000 times Web Request
Latency measured for each access l

xStart measuring immediately cerver

x3.runs . /

Cache

Wrong About Stats

* Too few samples

e Gaussian (not)

C
O
o
>
O
-
)
2
O
©
e
O
&
E=
>
=
o

H#H occurrences

Multimodal Distribution

N 50%

Latency 5 ms

99%

f_’

10 ms

Multimodal Distribution

Using Kernel Density Estimates to investigate Multimodality

By B. W. SILVERMAN
University of Bath, U.K.
[Received August 1980]

SUMMARY

A technique for using kernel density estimates to investigate the number of modes in a
population is described and discussed. The amount of smoothing is chosen automatically
in a natural way.

Keywords: DENSITY ESTIMATE; MODE; BOOTSTRAP;, TOTAL POSITIVITY; CHONDRITES; BUMP
HUNTING

1. INTRODUCTION

INVESTIGATION of the number of modes or maxima in a density or its derivative has been
considered by several authors, for example Cox (1966) and Good and Gaskins (1980). Most

Wrong About Stats

* Too few samples

e Gaussian (not)

c
O
-
-
O
-
i)
=
"
(©
O
O
&
=
-
=
[

8
r
R
s}
>
®
°

Coordinated Omission

request request request
request request
. l v v l
i 2
A A A .
0 10 20 30 40 50 60 7J go LiIme
response response
response response

Wrong About Stats

* Too few samples

e Gaussian (not)

c
O
-
-
O
-
i)
=
"
(©
O
O
&
=
-
=
[

8
r
R
s}
>
®
°

Wrong About What Matters

-
O
o
(qV)
N
&
=]
Q.
O
Q
| -
-
)
(qV)
&
Q
| -
(ol
o

“Programmers waste enormous amounts of
time thinking about ... the speed of
noncritical parts of their programs ... Forget
about small efficiencies ...97% of the time:
premature optimization is
the root of all evil. Yet we
should not pass up our

opportunities in that critical
3%.”

-- Donald Knuth

Wrong About What Matters

* Premature optimization
* Unrepresentative workloads

Wrong About What Matters

* Premature optimization
* Unrepresentative workloads
* Memory pressure

3

* Premature optimization
* Unrepresentative workloads
* Memory pressure

 Hidden components

Wrong About What Matters

Wrong About What Matters

Premature optimization
Unrepresentative workloads
Memory pressure

Hidden components
Reproducibility of measurements

D ad b od o o b
.......

BECOMING LESS WRONG il

. . N
& 3 1 y J

User Actions Matter

X >Y for workload Z
with trade offs A, B, and C

- http://www.toomuchcode.org/

o b b o o wd l

'EREERAE

Profiling

Profiling

Profiling

o cProfile O 5
\:-gl:gﬁ-llte% jVisualVM) ﬁ
gprof &
Oprofile

perf

Various basic CPU statistics, system wide, for 10 seconds
perf stat -e cycles,instructions,cache-misses -a sleep 10

Count system calls for the entire system, for 5 seconds
perf stat -e 'syscalls:sys_enter_ *'-asleep 5

Sample CPU stack traces, once every 10,000 Level 1 data
cache misses, for 5 seconds

perf record -e L1-dcache-load-misses -¢c 10000 -ag -- sleep 5

http://www.brendangregg.com/perf.html

perf

perf stat gzip filel

Performance counter stats for

1920.159821
13

0

258
5,649,595,479
1,808,339,931
1,171,884,577
8,625,207,199

1,488,797,176
53,395,139

1.936842598

task-clock
context-switches
CPU-migrations
page-faults

cycles
stalled-cycles-frontend
stalled-cycles-backend
instructions

branches
branch-misses

seconds time elapsed

'gzip filel'

HHRHHHHRRHRHHRR

~
~

N W
WUOIOFRRONNOOOO

http://www.brendangregg.com/perf.html

.991
.007
.000
.134
.942
.01%
.74%
.53

.21

.351
.59%

CPUs utilized

K/sec
K/sec
K/sec
GHz [83.
frontend cycles idle [83.
backend cycles idle [66.

insns per cycle

43%]
54%]
77%]

stalled cycles per insn [83.51%]
M/sec [82.58%]
of all branches [83.78%]

Profiling

cProfile)

()

YourKit &
jProfiler

jVisualVM)

gprof &
Oprofile

gprof: Where Does It Spend Its Time?

 Compile with profiling
$ gcc -Wall -pg test gprof.c test gprof new.c -o test gprof

e Execute the code
$./test gprof

* Run the gprof

$ gprof test gprof gmon.out > analysis.txt

http://www.thegeekstuff.com/2012/08/gprof-tutorial/

gprof: Where Does It Spend Its Time?

7% cumulative self self total

time seconds seconds calls s/call s/call
33.86 15.52 15.52 1 15.52 15.52

33.82 31.02 15.50 1 15.50 15.50

33.29 46.27 15.26 1 15.26 30.75

0.07 46.30 0.03

http://www.thegeekstuff.com/2012/08/gprof-tutorial/

name
func2
new_ funcl
funcl
main

Profiling

cProfile)

()

YourKit &
jProfiler

jVisualVM)

gprof &
Oprofile

Linux Performance Observability Tools

SS QOperating System

Hardware

netstat sysdig

strace
lsof ltrace
pcstat\

System L|brar|;¥ / /

£\ pidstat \\\ \App..cat.ons ////
pert \

perf

/ // mpstat
y ¥ CPU
Aterconnect\A l

Various:
sar /proc
dstat

rdmsr

CPU

tcpdump

l

top ps —» 1
/pidstat

~ vmstat
slabtop >

Memory |Perf

Bus |tiptop
—

DRAM

Network Controller

-_nicstat

netstat

Port

~ ip

ftrace \ Syster}\CaII Interface / / / /
]S(tap o \ VFS SOCketS */1 Scheduler/
C
tap o \ File Systems TCP/UDP */ <
ebpf X
dtrace 3 \Volume Manager IP y Virtual <
C
lttng O | Block Device Interface Ethernet Memory «
\/ Device Drivers
iostat / perf tiptop — | /O Bus\\\ \ free
iotop Expander Interconnect /O Bridge 1ptr af
blktrace : |
I/0 Controller
Interface Transports
Disk Disk Swap Port
swapon 7

http://www.brendangregg.com/linuxperf.html

ethtool/ snmpget l lldptool

Profiling

cProfile)

()

YourKit &
jProfiler

jVisualVM)

gprof &
Oprofile

Profiling

cProfile)

() O
YourKit & P
jProfiler
gprof &

Oprofile

Profiling

®

YourKit &

jProfiler
gprof &

cProfile)

a

Oprofile

Profiling

YourKit &
jProfiler

Oprofile

Profiling

Code instrumentation
Aggregate over logs
Traces

Microbenchmarking: Blessing & Curse

+ Quick & cheap

+ Answers narrow ?s well

— Often misleading results

— Not representative of the program

Microbenchmarking: Blessing & Curse

* Choose your N wisely

Prof. Saman Amarasinghe, MIT 2009

1E+10

9E+09 -

8E+09 -

7E+09 -

6E+09

5E+09

4E+09

3E+09

2E+09 -

1E+09 -

Choose Your N Wisely

-#-1 Cache Miss
L2 Cache Miss
=<3 Cache Miss

—TLB misses

===Peorformance

Microbenchmarking: Blessing & Curse

* Choose your N wisely
e Measure side effects

{IL)

- X'!"
-

Microbenchmarking: Blessing & Curse

* Choose your N wisely
e Measure side effects
e Beware of clock resolution

o b b o o wd l

'EREERAE

Microbenchmarking: Blessing & Curse

* Choose your N wisely
e Measure side effects

* Beware of clock resolution ‘EL'\-’]’

e Dead Code Elimination

Microbenchmarking: Blessing & Curse

Choose your N wisely
Measure side effects
Beware of clock resolution
Dead Code Elimination
Constant work per iteration

Non-Constant Work Per Iteration

(3} 10 O

What Should a Benchmark Do?

Measure behavior of system
Represent realistic workload

Run for sufficiently long time
Compare in the same context

Output predictable and reproducible results

Follow-up Material

How NOT to Measure Latency by Gil Tene
— http://www.infoq.com/presentations/latency-pitfalls
Taming the Long Latency Tail on highscalability.com

— http://highscalability.com/blog/2012/3/12/go0ogle-taming-the-long-latency-
tail-when-more-machines-equal.html

Performance Analysis Methodology by Brendan Gregg
— http://www.brendangregg.com/methodology.html
Silverman’s Mode Detection Method by Matt Adereth

— http://adereth.github.io/blog/2014/10/12/silvermans-mode-detection-
method-explained/

How Not To Measure System Performance by James Bornholt

— https://homes.cs.washington.edu/~bornholt/post/performance-
evaluation.html

Trust No One, Not Even Performance Counters by Paul Khuong

— http://www.pvk.ca/Blog/2014/10/19/performance-optimisation-~-writing-an-
essay/#trust-no-one

Follow-up Material

Producing Wrong Data Without Doing Anything Obviously Wrong!

Todd Mytkowicz Amer Diwan

Matthias Hauswirth

Peter F. Sweeney

Department of Computer Science Faculty of Informatics IBM Research
University of Colorado University of Lugano Hawthorne, NY, USA
Boulder, CO, USA Lugano, CH pfs@us.ibm.com

{mytkowit,diwan }@colorado.edu

Abstract

This paper presents a surprising result: changing a seemingly
innocuous aspect of an experimental setup can cause a Sys-
tems researcher to draw wrong conclusions from an experi-
ment. What appears to be an innocuous aspect in the exper-
imental setup may in fact introduce a significant bias in an
evaluation. This phenomenon is called measurement bias in
the natural and social sciences.

Our results demonstrate that measurement bias is signif-
icant and commonplace in computer system evaluation. By
significant we mean that measurement bias can lead to a per-
formance analysis that either over-states an effect or even
yields an incorrect conclusion. By commonplace we mean
that measurement bias occurs in all architectures that we
tried (Pentium 4, Core 2, and m5 O3CPU), both compilers
that we tried (gcc and Intel’s C compiler), and most of the
SPEC CPU2006 C programs. Thus, we cannot ignore mea-

Matthias.Hauswirth@unisi.ch

1. Introduction

Systems researchers often use experiments to drive their
work: they use experiments to identify bottlenecks and then
again to determine if their optimizations for addressing the
bottlenecks are effective. If the experiment is biased then a
researcher may draw an incorrect conclusion: she may end
up wasting time on something that is not really a problem
and may conclude that her optimization is beneficial even
when it is not.

We show that experimental setups are often biased. For
example, consider a researcher who wants to determine if
optimization O is beneficial for system S. If she measures
S and S + O in an experimental setup that favors S + O,
she may overstate the effect of O or even conclude that O
is beneficial even when it is not. This phenomenon is called
measurement bias in the natural and social sciences. This
paper shows that measurement bias is commonplace and

http://www-plan.cs.colorado.edu/diwan/asplos09.pdf

Follow-up Material

* List of media for learning more about measurement bias in
system benchmarks:
https://gist.github.com/aysylu/58ab5d67314d684a7f4c

List of media for learning more about measurement bias in
system benchmarks

gist.github.com

List of media for learning more about measurement bias in ...

Cache

.»f

... t(V?. .

Takeaway #1

Takeaway #2: Outliers

Your theory is
i i&x ,.‘,,'_/':%!- ':

b ad b o ud o
'EEEREE

Takeaway #3: Workload

jax

Benchmarking:
“You're @01’113 It Wmng

Aysylu Greenberg
@aysylu22

Google

