
Jamie Allen
Sr. Director of Global Services

Effective
v2.0

@jamie_allen

Reac%ve'Applica%ons' 2'

Effective	Akka

Goal

Communicate	as	much	about	what	I’ve	learned	in	6+	years	of	actor	
development	within	one	hour	

We	will	start	with	a	cursory	overview	of	what	Actors	are	and	the	
problems	they	solve,	then	move	into	some	real-world	use	cases	and	
how	to	test	them

3

Effective	Akka

What are Actors?
• An abstraction over the primitives of concurrency, asynchrony and

resilience

• The embodiment of single-threaded interactions happening
concurrently and asynchronously across all of the resources available
to your application

• Finer-grained fault tolerance than thread pool utilities like
UncaughtExceptionHandler

• Location transparency in support of greater asynchrony and resilience

4

Effective	Akka

What are Actors?
• Actors never interact with each other via synchronous method calls,

only messages

• Actors can be domain instances:

• A “customer” representation, live in memory

• Messages arrive and tell them how the world is changing around
them

• Actors can be workers:

• Encapsulate no state, they just know what to do when they get
messages that have data in them

5

Effective	Akka

What are Actors?
• Should actors be used everywhere?

• Probably not, but they make excellent “boundaries”

• Across physical nodes

• Across services

• They’re also excellent for defining strategies to handle failures you
understand, as well as those you do not

6

Effective	Akka

What are Actors?

7

C2C1

D1 D2 D3Ac2Ac1

A1 A2 A3 A4

Customers

Accounts &
Devices

Applications

AS DS

Effective	Akka

Actors and Pure Functional Programming
are NOT Mutually Exclusive

• Pure FP is all about statically-checked correctness of logic, particularly
with type safety

• Actors are about resilience to failure beyond the type system

• Distributed systems offer no such guarantees except at the protocol
level - how do you verify types of what messages you can send/
receive through a message broker?

• There is no type checking for hardware failures or network split
brains

• Actors help you cope with problems at this level

8

USE CASES

Effective	Akka

Use Case 1

•A	large	cable	company	needs	to	stop	pinging	its	massive	database	for	
every	On	Demand	web	service	request	from	someone	using	their	remote	
control	

•A	live	cache	of	“entitlement”	data	is	required	that	is	updated	quickly	when	
a	customer	tries	to	change	their	service	

•Minimal	downtime	is	required	as	On	Demand	viewing	is	one	of	the	
corporation’s	largest	profit	centers

10

Effective	Akka

The Time-Based Approach

11

MegaCorp)
DB)

Riak)

Message)
Queue)

Warehoused)
Data)

DB)
Update)
Handler)

Transformer)

Transformer)

Transformer)

Transformer)

Transformer)

Effective	Akka

Issues

•A	missed	event	means	the	cache	is	now	out	of	synch	with	the	database	

•Assuming	we	even	know	a	failure	has	occurred	

•A	reload	of	the	cache	for	all	customers	would	be	2.5	hours	

•Latency	is	harder	to	track	and	dependent	on	“burstiness"	of	updates	

•How	do	you	represent	deleted	accounts?

12

Effective	Akka

The Self-Healing Approach

13

MegaCorp)
DB)

Riak)

Warehoused)
Data)

Account)
Retreiver)

Transformer)

Transformer)

Transformer)

Transformer)

Transformer)

Supervisor)

Supervisor)

Effective	Akka

Wins

•Fixed	and	tunable	latency	for	updates	depending	on	number	of	workers	
(and	the	size	of	their	buckets	of	accounts)	

•Resilience	via	supervision	

•Simpler	architecture	with	less	moving	parts	

•Never	out	of	synch	with	primary	database	for	longer	than	the	time	it	takes	
to	handle	the	maximum	size	of	a	bucket	of	accounts	

•Riak	handles	accounts	to	“delete”	automatically	by	tombstoning	records	
that	have	not	been	updated	within	a	time	window	(session	length	setting)

14

Effective	Akka

Use Case 2

•An	actor	will	receive	a	request	to	get	all	of	the	account	balances	for	a	
customer	(savings,	checking	and	money	market)	

•Actor	should	not	wait	to	finish	handling	one	request	before	handling	
another	

•Actor	should	receive	service	proxies	from	which	it	can	retrieve	each	
account’s	info	

•Actor	should	either	get	responses	from	all	three	within	a	specified	time,	or	
send	a	timeout	response	back	to	the	requestor

15

Effective	Akka

Cameo Pattern

16

•How	to	handle	individual	messages	to	an	actor	without	making	it	do	all	of	
the	work	before	handling	the	next	message	

•Similar	to	the	Saga	Pattern,	but	with	less	overhead	and	rules

Effective	Akka

Request Aggregation
• When an actor handles a message, it frequently has to perform

multiple interactions with other services to provide a valid response

• We do not want the actor that received the message to be tied up
performing that work

17

Request Receiver

Message 1
Handler

Message 2
Handler

Message 3
Handler

Message 1

Message 4

Message 2

Message 3

Message 4
Handler

Message 1
Handler

Effective	Akka

Transactions?

•Could	be!	

•You	have	to	write	the	logic	of	how	to	roll	back	if	anything	fails	

•But	you	have	the	control	and	the	context	to	do	it,	especially	if	your	effects	
are	going	to	multiple	external	places	or	data	stores

18

Effective	Akka

All Code is on GitHub
• I’m	going	to	be	showing	some	reasonably	complex	examples	

• Don’t	worry	about	trying	to	copy	the	code	from	the	slides	

http://github.com/jamie-allen/effective_akka

19

http://github.com/jamie-allen/effective_akka

Effective	Akka

Use Futures and Promises?

•I	prefer	not	to.		Use	another	actor	responsible	for:	

•Capturing	the	context	(original	requestor)	

•Defining	how	to	handle	responses	from	other	services	

•Defining	the	timeout	that	will	race	against	your	

•Each	Future	and	the	resulting	AskSupport	have	an	additional	cost	that	we	
do	not	always	need	to	pay	

•Futures	do	make	an	excellent	mechanism	for	calling	into	an	actor	world	
from	a	non-actor	context	

•Futures	are	also	more	“composable”	and	can	help	define	a	problem	in	
more	simple	terms	

•Note	that	Future	failure	handling	via	callbacks	is	no	more	composable	than	
Try/Catch

20

Effective	Akka

Use Futures and Promises?

 def receive = {
 case GetCustomerAccountBalances(id) =>
 val futSavings =
 savingsAccounts ? GetCustomerAccountBalances(id)
 val futChecking =
 checkingAccounts ? GetCustomerAccountBalances(id)
 val futMM =
 moneyMarketAccounts ? GetCustomerAccountBalances(id)

 val futBalances = for {
 savings <- futSavings.mapTo[Option[List[(Long, BigDecimal)]]]
 checking <- futChecking.mapTo[Option[List[(Long, BigDecimal)]]]
 mm <- futMM.mapTo[Option[List[(Long, BigDecimal)]]]
 } yield AccountBalances(savings, checking, mm)
 futBalances.map(sender ! _)
 }
}

21

Yuck!

Effective	Akka

Capturing the Sender

•This	is	trickier	than	it	sounds	

•You	need	the	“sender”	value	from	the	actor	that	received	the	original	
request,	not	the	sender	inside	of	the	actor	handling	it!	

•One	of	the	biggest	sources	of	actor	bugs

22

Effective	Akka

Use Futures and Promises?

 def receive = {
 case GetCustomerAccountBalances(id) =>
 val futSavings =
 savingsAccounts ? GetCustomerAccountBalances(id)
 val futChecking =
 checkingAccounts ? GetCustomerAccountBalances(id)
 val futMM =
 moneyMarketAccounts ? GetCustomerAccountBalances(id)

 val futBalances = for {
 savings <- futSavings.mapTo[Option[List[(Long, BigDecimal)]]]
 checking <- futChecking.mapTo[Option[List[(Long, BigDecimal)]]]
 mm <- futMM.mapTo[Option[List[(Long, BigDecimal)]]]
 } yield AccountBalances(savings, checking, mm)
 futBalances.map(sender ! _)
 }

23

Bug!

Effective	Akka

Use Futures and Promises?

 def receive = {
 case GetCustomerAccountBalances(id) =>
 val futSavings =
 savingsAccounts ? GetCustomerAccountBalances(id)
 val futChecking =
 checkingAccounts ? GetCustomerAccountBalances(id)
 val futMM =
 moneyMarketAccounts ? GetCustomerAccountBalances(id)

 val futBalances = for {
 savings <- futSavings.mapTo[Option[List[(Long, BigDecimal)]]]
 checking <- futChecking.mapTo[Option[List[(Long, BigDecimal)]]]
 mm <- futMM.mapTo[Option[List[(Long, BigDecimal)]]]
 } yield AccountBalances(savings, checking, mm)
 futBalances.pipeTo(sender)
 }

24

Fixed!

Effective	Akka

The Actor Approach
• Use an actor to encapsulate a context, such as a specific user request

• Define the values you need to retrieve/transform

• Define the behavior for what to do when you get them, or if you only
get partial responses (transaction management)

• Define the response to the original requester and SHUT DOWN THE
ACTOR

• Send the messages to start the work

• Set up the single competing timeout message send

25

Effective	Akka

Use an Anonymous Actor?
class OuterActor extends Actor
 def receive = LoggingReceive {
 case DoWork => {
 val originalSender = sender

 context.actorOf(Props(new Actor() {
 def receive = LoggingReceive {
 case HandleResponse(value) =>
 timeoutMessager.cancel
 sendResponseAndShutdown(Response(value))
 case WorkTimeout =>
 sendResponseAndShutdown(WorkTimeout)
 }

 def sendResponseAndShutdown(response: Any) = {
 originalSender ! response
 context.stop(self)
 }

 someService ! DoWork

 import context.dispatcher
 val timeoutMessager = context.system.scheduler.scheduleOnce(250 milliseconds) {
 self ! WorkTimeout
 }
 }))
 }
 }
}

26

Anonymous	
Actor}

Effective	Akka

Use an Anonymous Actor?

•I	call	this	the	“Extra”	Pattern	

•It’s	not	bad,	but	it	has	drawbacks:	

•Poor	stack	traces	due	to	“name	mangled”	actor	names,	like	$a	

•More	difficult	to	maintain	the	cluttered	code,	and	developers	have	to	
read	through	the	body	of	the	anonymous	actor	to	figure	out	what	it	is	
doing	

•More	likely	to	“close	over”	state

27

Effective	Akka

Create a “Cameo” Actor

•Externalize	the	behavior	of	such	an	anonymous	actor	into	a	specific	type	

•Anyone	maintaining	the	code	now	has	a	type	name	from	which	they	can	
infer	what	the	actor	is	doing	

•Most	importantly,	you	can’t	close	over	state	from	an	enclosing	actor	-	it	
must	be	passed	explicitly

28

Effective	Akka

Create a “Cameo” Actor
class WorkerActor(dependency: ActorRef) extends Actor {
 def receive = LoggingReceive {
 case HandleResponse(value) =>
 timeoutMessager.cancel
 sendResponseAndShutdown(Response(value))
 case WorkTimeout =>
 sendResponseAndShutdown(WorkTimeout)
 }

 def sendResponseAndShutdown(response: Any) = {
 originalSender ! response
 context.stop(self)
 }

 // Send request(s) required
 dependency ! GetData(1L)

 import context.dispatcher
 val timeoutMessager = context.system.scheduler.scheduleOnce(
 250 milliseconds, self, WorkTimeout)
}

class DelegatingActor extends Actor
 def receive = LoggingReceive {
 case DoWork => {
 val originalSender = sender
 val worker = context.actorOf(WorkerActor.props(), “worker”)
 someService.tell(DoWork, worker)
 }
 }
}

29

Effective	Akka

Remember to Stop the Actor
•When	you	are	finished	handling	a	request,	ensure	that	the	actor	used	is	
shutdown	

• This	is	a	big	memory	leak	if	you	don’t	

 def sendResponseAndShutdown(response: Any) = {
 originalSender ! response
 log.debug("Stopping context capturing actor")
 context.stop(self)
 }

30

Effective	Akka

Write Tests!

•Always	remember	to	write	tests	with	your	actors	

•Create	unit	tests	that	check	the	functionality	of	method	calls	without	actor	
interactions	using	TestActorRef	

•Create	integration	tests	that	send	messages	to	actors	and	check	the	
aggregated	results

31

Effective	Akka

 "An AccountBalanceRetriever" should {
 "return a list of account balances" in {
 val savingsAccountsProxy = system.actorOf(Props(new SavingsAccountsProxyStub()), "svg")
 val checkingAccountsProxy = system.actorOf(Props(new CheckingAccountsProxyStub()), "chk")
 val moneyMarketAccountsProxy = system.actorOf(Props(new MoneyMarketAccountsProxyStub()), "mm")
 val accountBalanceRetriever = system.actorOf(
 Props(new AccountBalanceRetriever(savingsAccountsProxy,
 checkingAccountsProxy,
 moneyMarketAccountsProxy)),
 "cameo-1")
 val probe1 = TestProbe()
 val probe2 = TestProbe()

 within(300 milliseconds) {
 probe1.send(accountBalanceRetriever, GetCustomerAccountBalances(1L))
 val result = probe1.expectMsgType[AccountBalances]
 result must equal(AccountBalances(Some(List((3, 15000))),
 Some(List((1, 150000), (2, 29000))),
 Some(List())))
 }
 within(300 milliseconds) {
 probe2.send(accountBalanceRetriever, GetCustomerAccountBalances(2L))
 val result = probe2.expectMsgType[AccountBalances]
 result must equal(AccountBalances(
 Some(List((6, 640000), (7, 1125000), (8, 40000))),
 Some(List((5, 80000))),
 Some(List((9, 640000), (10, 1125000), (11, 40000)))))
 }
 }
 }

32

Effective	Akka

Add Non-Functional Requirements
 within(300 milliseconds) {
 probe1.send(accountBalanceRetriever,
 GetCustomerAccountBalances(1L))
 val result = probe1.expectMsgType[AccountBalances]
 result must equal(AccountBalances(
 Some(List((3, 15000))),
 Some(List((1, 150000), (2, 29000))),
 Some(List())))
 }
 within(300 milliseconds) {
 probe2.send(accountBalanceRetriever,
 GetCustomerAccountBalances(2L))
 val result = probe2.expectMsgType[AccountBalances]
 result must equal(AccountBalances(
 Some(List((6, 640000), (7, 1125000), (8, 40000))),
 Some(List((5, 80000))),
 Some(List((9, 640000), (10, 1125000), (11, 40000)))))
 }

33

Effective	Akka

Write Moar Tests!

 "return a TimeoutException when timeout is exceeded" in {
 val checkingAccountsProxy =
 system.actorOf(Props(new CheckingAccountsProxyStub()),“timeout-chk")

 within(250 milliseconds, 500 milliseconds) {
 probe.send(accountBalanceRetriever, GetCustomerAccountBalances(1L))
 probe.expectMsg(AccountRetrievalTimeout)
 }
 }

34

Best Practices

Effective	Akka

Avoid Complexity of Coordination
• If	your	implementation	can	be	accomplished	with	no	coordination,	you	
don’t	need	Remoting	or	Cluster	and	are	linearly	scalable	

• Use	Remoting	if:	

• You	need	to	scale	across	nodes	but	don’t	need	awareness	of	nodes	
going	down	

• You	don’t	need	to	scale	“tiers”	or	roles	in	the	cluster	independently	of	
one	another	

• You	can	get	away	with	DeathWatch	and	simple	multi-node	routing	

• Use	Cluster	if:	

• You	need	to	know	if	nodes	went	down	to	spin	up	an	actor	elsewhere	

• You	need	independent,	managed	scalability	across	tiers

36

Effective	Akka

Don’t Create Actors By Type Signature
• Akka	Actors	can	be	created	by	passing	a	type	to	the	Props	constructor	

• If	you	add	parameters	to	the	actor	later,	you	don’t	get	a	compile	time	error	

 val myActor = context.actorOf(Props[AccountBalanceResponseHandler])

37

Effective	Akka

Create a Props Factory
• Creating	an	actor	within	another	actor	implicitly	closes	over	“this”	

• Necessary	until	spores	(SIP-21)	are	part	of	Scala,	always	necessary	from	
Java	

• Create	a	Props	factory	in	a	companion	object	

object AccountBalanceResponseHandler {
 def props(savingsAccounts: ActorRef,
 checkingAccounts: ActorRef,
 moneyMarketAccounts: ActorRef,
 originalSender: ActorRef): Props = {

 Props(new AccountBalanceResponseHandler(savingsAccounts, checkingAccounts,
 moneyMarketAccounts, originalSender))
 }
}

38

Effective	Akka

Keep Your Actors Simple

• Do	not	conflate	responsibilities	in	actors	

• Becomes	hard	to	define	the	boundaries	of	responsibility	

• Supervision	becomes	more	difficult	as	you	handle	more	possibilities	

• Debugging	becomes	very	difficult

39

Effective	Akka

Be Explicit in Supervision

• Every	non-leaf	node	is	technically	a	supervisor	

• Create	explicit	supervisors	under	each	node	for	each	type	of	child	to	be	
managed

40

Effective	Akka

Conflated Supervision

41

C2C1

D1 D2 D3Ac2Ac1

A1 A2 A3 A4

Customers

Accounts &
Devices

Applications

Effective	Akka

Explicit Supervision

42

C2C1

D1 D2 D3Ac2Ac1

A1 A2 A3 A4

Customers

Accounts &
Devices

Applications

AS DS

Effective	Akka

Use Failure Zones

• Multiple	isolated	zones	with	their	own	resources	(thread	pools,	etc)	

• Prevents	starvation	of	actors	

• Prevents	issues	in	one	branch	from	affecting	another	

 val responseHandler = system.actorOf(
 AccountBalanceResponseHandler.props(),
 "cameo-handler").withDispatcher(
 "handler-dispatcher")

43

Effective	Akka

No Failure Zones

44

C2C1

D1 D2 D3Ac2Ac1

A1 A2 A3 A4

Customers

Accounts &
Devices

Applications

AS DS

Effective	Akka

Explicit Failure Zones

45

C2C1

D1 D2 D3Ac2Ac1

A1 A2 A3 A4

Customers

Applications

AS DS

Accounts &
Devices

Effective	Akka

Push, Pull or Backpressure?
• If	using	Reactive	Streams	(Akka	Streams/RxJava/etc),	you	get	back	

pressure	for	free	

• If	not,	you	have	to	choose	the	model	and	pain	you	want	to	endure	

• Pull	can	load	up	the	producer	

• Push	can	load	up	the	consumer(s)	

• Rules:	

• Start	with	no	guarantees	about	delivery	

• Add	guarantees	only	where	you	need	them	

• Retry	until	you	get	the	answer	you	expect,	or	timeout	

• Switch	your	actor	to	a	"nominal"	state	if	successful

46

Effective	Akka

Create Granular Messages

• Non-specific	messages	about	general	events	are	dangerous

47

AccountDeviceAdded(acctNum, deviceNum)

AccountsUpdated

• Can	result	in	"event	storms"	as	all	actors	react	to	them	

• Use	specific	messages	forwarded	to	actors	for	handling

• Don’t	reuse	messages,	even	if	they	have	similar	usages!	

• Hurts	refactoring

Effective	Akka

Create Specialized Exceptions

• Don't	use	java.lang.Exception	to	represent	failure	in	an	actor	

• Specific	exceptions	can	be	handled	explicitly	

• State	can	be	transferred	between	actor	incarnations	in	Akka	(if	need	be)

48

Effective	Akka

Never Reference “this”

• Actors	die	

• Doesn't	prevent	someone	from	calling	into	an	actor	with	another	thread	

• Akka	solves	this	with	the	ActorRef	abstraction	

• Never	expose/publish	“this”	

• Loop	by	sending	messages	to	“self”	

• Register	by	sending	references	to	your	“self”

49

Effective	Akka

Never Reference “this” - Exception is JMX
• Instrument	every	actor	containing	state	with	JMX	MxBeans	

• Only	use	accessors,	do	not	use	“operations”	

• Akka	Actor	Paths	are	a	natural	MxBean	ObjectName	

• Gives	you	visibility	into	state	that	no	monitoring	tool	can	provide	

• See	Will	Sargent’s	excellent	blog	post	about	this	at	tersesystems.com

50

http://tersesystems.com

Effective	Akka

Immutable Interactions

•All	messages	passed	between	actors	should	be	immutable	

•All	mutable	data	to	be	passed	with	messages	should	be	copied	before	
sending	

•You	don’t	want	to	accidentally	expose	the	very	state	you’re	trying	to	
protect

51

Effective	Akka

Externalize Logic

• Consider	using	external	functions	in	objects	to	encapsulate	complex	
business	logic	

• Now	only	data	passed	in	as	operands	can	be	accessed,	supports	
purity	

• Easier	to	unit	test	outside	of	actor	context	

• Not	a	rule	of	thumb,	but	something	to	consider	as	complexity	increases	

• Not	as	big	of	an	issue	with	Akka's	TestKit

52

Effective	Akka

Semantically Useful Logging

• Trace-level	logs	should	have	output	that	you	can	read	easily	

• Use	line	breaks	and	indentation	

• Both	Akka	and	Erlang	support	hooking	in	multiple	listeners	to	the	event	
log	stream

53

Effective	Akka

Monitoring is Coming Back!

54

Effective	Akka

Monitoring is Coming Back!
• Visual representations of actors at runtime are invaluable tools

• Keep an eye out for actors whose mailboxes never drain and keep
getting bigger

• Look out for message handling latency that keeps going higher

• These are signs that the actors cannot handle their load

• Optimize with routers

• Rethink usage of Dispatchers

• Look at “throughput” setting for some groups of actors to batch
message handling

55

Effective	Akka

Monitoring will be a SPI
• You can tap into the stream and work with it as well

• Will work with Graphite, Coda Hale Metrics, statsd and more

• Will require a Production Success Subscription from Typesafe

56

Effective	Akka

AsyncDebugger is Now Here in Scala IDE
v4.2!
• Feature of the FOSS Scala IDE

• Ability to “walk” an actor message send and see where it goes

• Ability to retrace backwards where a message came from, and see the
state of the actor at that time

• Ability to “walk” into Futures as well

• Documentation: http://scala-ide.org/docs/current-user-doc/features/
async-debugger/index.html

57

http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html

©Typesafe 2015 – All Rights Reserved

