
Angelika Langer & Klaus Kreft
http://www.AngelikaLanger.com/

Java 8

Stream
Performance

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (2)

objective

• how do streams perform?
– explore whether / when parallel streams outperfom seq. streams
– compare performance of streams to performance of regular loops

• what determines stream performance?
– take a glance at some stream internal mechanisms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (3)

speaker's relationship to topic

• independent trainer / consultant / author
– teaching C++ and Java for ~20 years
– curriculum of half a dozen challenging Java seminars
– JCP observer and Java champion since 2005
– co-author of "Effective Java" column
– author of Java Generics FAQ
– author of Lambda Tutorial & Reference

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (4)

agenda

• introduction
• loop vs. sequential stream
• sequential vs. parallel stream

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (5)

what is a stream?

• equivalent of
sequence from functional programming languages

– object-oriented view: internal iterator pattern
 see GOF book for more details

• idea

myStream. forEach (s -> System.out.print(s));

stream operation user-defined functionality
applied to each element

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (6)

fluent programming

myStream. filter (s -> s.length() > 3)
. mapToInt (s -> s.length())

. forEach (System.out::print);

stream operation user-defined functionality
applied to each element

intermediate
operations

terminal
operation

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (7)

obtain a stream

• collection:

• array:

• resulting stream
– does not store any elements
– just a view of the underlying stream source

• more stream factories, but not in this talk

myCollection.stream(). ...

Arrays.stream(myArray). ...

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (8)

parallel streams

• collection:

• array:

• performs stream operations in parallel
– i.e. with multiple worker threads from fork-join common pool

myCollection.parallelStream(). ...

Arrays.stream(myArray).parallel(). ...

myParallelStream.forEach(s -> System.out.print(s));

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (9)

stream functionality rivals loops

• Java 8 streams:

• since Java 5:

• pre-Java 5: Iterator iter = myCol.iterator();
while (iter.hasNext()) {

String s = iter.next();
if (s.length() > 3)

System.out.print(s.length());
}

for (String s : myCol)
if (s.length() > 3)

System.out.print(s.length());

myStream.filter(s -> s.length() > 3)
.mapToInt(s -> s.length())
.forEach(System.out::print);

myStream.filter(s -> s.length() > 3)
.forEach(s->System.out.print(s.length()));

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (10)

obvious question …

… how does the performance compare ?

• loop vs. sequential stream vs. parallel stream

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (11)

benchmarks …

… done on an older desktop system with:

– Intel E8500,
 2 x 3,17GHz
 4GB RAM

– Win 7
– JDK 1.8.0_05

• disclaimer: your mileage may vary
– i.e. parallel performance heavily depends on number of CPU-Cores

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (12)

agenda

• introduction
• loop vs. sequential stream
• sequential vs. parallel stream

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (13)

how do sequential stream work?

• example

• filter() and mapToInt() return streams
– intermediate operations

• reduce() returns int
– terminal operation,
– that produces a single result from all elements of the stream

String[] txt = { "State", "of", "the", "Lambda",
"Libraries", "Edition"};

IntStream is = Arrays.stream(txt).filter(s -> s.length() > 3)
.mapToInt(s -> s.length())
.reduce(0, (l1, l2) -> l1 + l2);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (14)

pipelined processing

"State" "of" "the" "Lambda" "Libraries" "Edition"

5 6 9 7

"State" "Lambda" "Libraries" "Edition"

code looks like
really executed

filter

mapToInt

Arrays.stream(txt).filter(s -> s.length() > 3)
.mapToInt(s -> s.length())
.reduce(0, (l1, l2) -> l1 + l2);

reduce

5 11 20 270

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (15)

benchmark with int-array

• int[500_000], find largest element

– for-loop:

– sequential stream:

int[] a = ints;
int e = ints.length;
int m = Integer.MIN_VALUE;

for (int i = 0; i < e; i++)
if (a[i] > m) m = a[i];

int m = Arrays.stream(ints)
.reduce(Integer.MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (16)

results

for-loop: 0.36 ms
seq. stream: 5.35 ms

• for-loop is ~15x faster

• are seq. streams always much slower than loops?
– no, this is the most extreme example
– lets see the same benchmark with an ArrayList<Integer>

 underlying data structure is also an array
 this time filled with Integer values, i.e. the boxed equivalent of int

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (17)

benchmark with ArrayList<Integer>

• find largest element in an ArrayList with 500_000
elements

– for-loop:

– sequential stream:

int m = Integer.MIN_VALUE;
for (int i : myList)

if (i > m) m = i;

int m = myList.stream()
.reduce(Integer.MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (18)

results

ArrayList, for-loop: 6.55 ms
ArrayList, seq. stream: 8.33 ms

• for-loop still faster, but only 1.27x

• iteration for ArrayList is more expensive
– boxed elements require an additional memory access (indirection)
– which does not work well with the CPU’s memory cache

• bottom-line:
– iteration cost dominates the benchmark result
– performance advantage of the for-loop is insignificant

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (19)

some thoughts

• previous situation:
– costs of iteration are relative high, but
– costs of functionality applied to each element are relative low

 after JIT-compilation:
more or less the cost of a compare-assembler-instruction

• what if we apply a more expensive functionality
to each element ?

– how will this affect the benchmark results ?

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (20)

expensive functionality

• slowSin()

from Apache Commons Mathematics Library
– calculates a Taylor approximation of the sine function value

for the parameter passed to this method
– (normally) not in the public interface of the library

 used to calculate values for an internal table,
 which is used for interpolation by FastCalcMath.sin()

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (21)

benchmark with slowSin()

• int array / ArrayList with 10_000 elements
– for-loop:

– sequential stream:

– code for ArrayList changed respectively

int[] a = ints;
int e = a.length;
double m = Double.MIN_VALUE;

for (int i = 0; i < e; i++) {
double d = Sine.slowSin(a[i]);
if (d > m) m = d;

}

Arrays.stream(ints)
.mapToDouble(Sine::slowSin)
.reduce(Double.MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (22)

results

int[], for-loop: 11.72 ms
int[], seq. stream: 11.85 ms
ArrayList, for-loop: 11.84 ms
ArrayList, seq. stream: 11.85 ms

• for-loop is not really faster

• reason:
– applied functionality costs dominate the benchmark result
– performance advantage of the for-loop has evaporated

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (23)

other aspect (without benchmark)

• today, compilers (javac + JIT) can optimize
loops better than stream code

• reasons:
– linear code (loop) vs. injected functionality (stream)
– lambdas + method references are new to Java
– loop optimization is a very mature technology
– …

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (24)

for-loop vs. seq. stream / re-cap

• sequential stream can be slower or as fast as for-loop

• depends on
– costs of the iteration
– costs of the functionality applied to each element

• the higher the cost (iteration + functionality)
the closer is stream performance

to for-loop performance

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (25)

agenda

• introduction
• loop vs. sequential stream
• sequential vs. parallel stream

– introduction
– stateless functionality
– stateful functionality

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (26)

parallel streams

• library side parallelism
– important feature

 you need not know anything about threads, etc.
 very little implementation effort, just: parallel

• performance aspect
– outperform loops, which are inherently sequential

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (27)

how do parallel stream work?

• example

• parallel()’s functionality is based on
the fork-join framework

final int SIZE = 64;
int[] ints = new int[SIZE];
ThreadLocalRandom rand = ThreadLocalRandom.current();
for (int i=0; i<SIZE; i++) ints[i] = rand.nextInt();

Arrays.stream(ints)
.parallel()
.reduce(Math::max)
.ifPresent(System.out.println(m -> “max is: ” + m));

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (28)

fork join tasks

• original task is divided into two sub-tasks
by splitting the stream source into two parts

– original task’s result are based on sub-tasks’ results
– sub-tasks are divided again … fork phase

• at a certain depth partitioning stops
– tasks at this level (leaf tasks) are executed
– execution phase

• completed sub-task results
are ‘combined’ to super-task results

– join phase

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (29)

find largest element with parallel stream

T

fork phase execution join phase

reduce((i,j) -> Math.max(i,j));

0_63

T2

T1

0_31

32_63 T22

T21

T12

T11

0_15

16_31

32_47

48_63

m48_63

m32_47

m16_31

m0_15

T2

T1

max(m32_47,m48_63)

max(m0_15,m16_31)

m32_63

m0_31

T

max(m0_31,m32_63)

m0_63

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (30)

split level

• deeper split level than shown !!!

– execution/leaf tasks: ~ 4*numberOfCores
 8 tasks for a dual core CPU (only 4 in the previous diagram)

– i.e. one additional split (only 2 in the previous graphic)

• key abstractions
– java.util.Spliterator

– java.util.concurrent.ForkJoinPool.commonPool()

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (31)

what is a Spliterator ?

• spliterator = splitter + iterator

• each type of stream source has its own spliterator type
– knows how to split the stream source

 e.g. ArrayList.ArrayListSpliterator
– knows how to iterate the stream source

 in execution phase

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (32)

what is the CommonPool ?

• common pool is a singleton fork-join pool instance
– introduced with Java 8
– all parallel stream operations use the common pool

 so does other parallel JDK functionality (e.g. CompletableFuture), too

• default: parallel execution of stream tasks uses
– (current) thread that invoked terminal operation, and
– (number of cores – 1) many threads from common pool

 if (number of cores) > 1

• this default configuration used for all benchmarks

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (33)

parallel streams + intermediate operations

• what if the stream contains
upstream intermediate operations

when/where are these applied to the stream ?

... .parallelStream().filter(...)
.mapToInt(...)
.reduce((i,j) -> Math.max(i,j));

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (34)

find largest element in parallel

filter(...).mapToInt(...).reduce((i,j) -> Math.max(i,j));

. … .

filter

mapToInt

reduce

T

T2

T1

T22

T21

T12

T11

T2

T1

T

execution

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (35)

parallel overhead …

… compared to sequential stream algorithm

• algorithm is more complicated / resource intensive
– create fork-join-task objects

 splitting
 fork-join-task objects creation

– thread pool scheduling
– …

• plus additional GC costs
– fork-join-task objects have to be reclaimed

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (36)

agenda

• introduction
• loop vs. sequential stream
• sequential vs. parallel stream

– introduction
– stateless functionality
– stateful functionality

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (37)

back to the first example / benchmark parallel

• find largest element, array / collection, 500_000 elements

– sequential stream:

– parallel stream:

int m = Arrays.stream(ints)
.reduce(Integer.MIN_VALUE, Math::max);

int m = Arrays.stream(ints).parallel()
.reduce(Integer.MIN_VALUE, Math::max);

int m = myCollection.stream()
.reduce(Integer.MIN_VALUE, Math::max);

int m = myCollection.parallelStream()
.reduce(Integer.MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (38)

results

seq. par. seq./par.

int-Array 5.35 ms 3.35 ms 1.60

ArrayList 8.33 ms 6.33 ms 1.32

LinkedList 12.74 ms 19.57 ms 0.65

HashSet 20.76 ms 16.01 ms 1.30

TreeSet 19.79 ms 15.49 ms 1.28

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (39)

result discussion

• why is parallel LinkedList performance so bad ?
– hard to split
– needs 250_000 iterator’s next() invocations for the first split

 with ArrayList: just some index computation

• performance of the other collections is also not so great
– functionality applied to each element is not very CPU-expensive

 after JIT-compilation: cost of a compare-assembler-instruction
– iteration (element access) is relative expensive (indirection !)

 but not CPU expensive
– but more CPU-power is what we have with parallel streams

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (40)

result discussion (cont.)

• why is parallel int-array performance relatively good ?
– iteration (element access) is no so expensive (no indirection !)

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (41)

CPU-expensive functionality

• back to slowSin()

– calculates a Taylor approximation of the sine function value
for the parameter passed to this method

– CPU-bound functionality
 needs only the initial parameter from memory

 calculation based on it’s own (intermediate) results

– ideal to be speed up by parallel streams with multiple cores

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (42)

benchmark parallel with slowSin()

• array / collection with 10_000 elements

– array:

– collection:

myCollection.stream() // .parallelStream()
.mapToDouble(Sine::slowSin)
.reduce(Double.MIN_VALUE, (i, j) -> Math.max(i, j);

Arrays.stream(ints) // .parallel()
.mapToDouble(Sine::slowSin)
.reduce(Double.MIN_VALUE, (i, j) -> Math.max(i, j);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (43)

results

seq. par. seq./par.

int-Array 10.81 ms 6.03 ms 1.79

ArrayList 10.97 ms 6.10 ms 1.80

LinkedList 11.15 ms 6.25 ms 1.78

HashSet 11.15 ms 6.15 ms 1.81

TreeSet 11.14 ms 6.30 ms 1.77

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (44)

result discussion

• performance improvements for all stream sources
– by a factor of ~ 1.8

 even for LinkedList

• the ~1.8 is the maximum improvement on our platform
– the remaining 0.2 are

 overhead of the parallel algorithm
 sequential bottlenecks (Amdahl’s law)

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (45)

sufficient size (without benchmark)

• stream source must have a sufficient size,
so that it benefits from parallel processing

• overhead increases with growing number of cores
– number of tasks ~ 4*number of cores
– (in most cases) not with the size of the stream source

• Doug Lea mentioned 10_000 for CPU-inexpensive funct.
– http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

• 500_000 respectively 10_000 in our examples
– size can be smaller for CPU-expensive functionality

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (46)

dynamic overclocking (without benchmark)

• modern multi-core CPU typically increases the
CPU-frequency when not all of its cores are active

– Intel call this feature: turbo boost

• benchmark sequential versus parallel stream
– seq. test might run with a dynamically overclocked CPU
– will this also happen in the real environment or only in the test?

• no issue with our test system
– too old
– no dynamic overclocking supported

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (47)

agenda

• introduction
• loop vs. sequential stream
• sequential vs. parallel stream

– introduction
– stateless functionality
– stateful functionality

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (48)

stateful functionality …

… with parallel streams / multiple threads boils down to
shared mutable state

• costs performance to handle this
– e.g. lock-free CAS, requires retries in case of collision

• traditionally not supported with sequences
– functional programming languages don’t have mutable types, and
– often no parallel sequences either

• new solutions/approaches in Java 8 streams

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (49)

stateful functionality with Java 8 streams

• intermediate stateful operations, e.g. distinct()
– see javadoc: This is a stateful intermediate operation.
– shared mutable state handled by stream implementation (JDK)

• (terminal) operations that allow stateful functional
parameters, e.g.

forEach(Consumer<? super T> action)

– see javadoc: If the action accesses shared state, it is responsible
for providing the required synchronization.

– shared mutable state handled by user/client code

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (50)

stateful functionality with Java 8 streams (cont.)

• stream’s overloaded method: collect()
– shared mutable state handled by stream implementation, and
– collector functionality

 standard collectors from Collectors (JDK)
 user-defined collector functionality (JDK + user/client code)

• don’t have time to discuss all situations
– only discuss distinct()
– shared mutable state handled by stream implementation (JDK)

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (51)

distinct()

• element goes to the result stream,
if it hasn’t already appeared before

– appeared before, in terms of equals()
– shared mutable state: elements already in the result stream

 have to compare the current element to each element of the output stream

• parallel introduces a barrier (algorithmic overhead)

.parallelStream().statelessOps().distinct().statelessOps().terminal();

two alternative
algorithms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (52)

two algorithms for parallel distinct()

• ordering + distinct()
– normally elements go to the next stage, in the same order in which

they appear for the first time in the current stage

• javadoc from distinct()
– Removing the ordering constraint with unordered() may result in

significantly more efficient execution for distinct() in parallel
pipelines, if the semantics of your situation permit.

• two different algorithms for parallel distinct()
– one for ordered streams + one for unordered streams

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (53)

benchmark with distinct()

• Integer[100_000], filled with 50_000 distinct values

• results:
seq. par. ordered par. unordered

6.39 ms 34.09 ms 9.1 ms

// parallel ordered
Arrays.stream(integers).parallel().distinct().count();

// sequential
Arrays.stream(integers).distinct().count();

// parallel unordered
Arrays.stream(integers).parallel().unordered().distinct().count();

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (54)

benchmark with distinct() + slowSin()

• Integer[10_000], filled with numbers 0 … 9999

– after the mapping 5004 distinct values

• results:
seq. par. ordered par. unordered

11.59 ms 6.83 ms 6.81 ms

Arrays.stream(newIntegers) //.parallel().unordered()
.map(i -> new Double(2200* Sine.slowSin(i * 0.001)).intValue())
.distinct()
.count();

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (55)

sequential vs. parallel stream / re-cap

to benefit from parallel stream usage …

• … stream source …
– must have sufficient size
– should be easy to split

• … operations …
– should be CPU-expensive
– should not be stateful

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (56)

advice

• benchmark on target platform !

• previous benchmark:
– find largest element, LinkedList, 500_000 elements

• what if we use a quad-core-CPU (Intel i5-4590) ?
– will the parallel result be worse, better, … better than seq. … ?

seq. par. seq./par.
12.74 ms 19.57 ms 0.65

seq. par. seq./par.
5.24 ms 4.84 ms 1.08

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (57)

authors

Angelika LangerAngelika Langer

Klaus Klaus KreftKreft

http://www.AngelikaLanger.com

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 10/13/2015,10:06 Stream Performance (58)

stream performance

Q & A

