

Ola Westin | Java Platform Group, Oracle

Production Time Profiling Using

Java Flight Recorder

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Overview of Java Mission Control

Overview of Java Flight Recorder

Creating Recordings

Analyzing Recordings

Demo

Customization, Future, Resources

Q&A

1

2

3

4

5

5

6

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What do people say about Java Mission Control?

“I managed to do in one day what I've failed to do in 2+ weeks using <profiling tool> and
<another profiling tool>.”

– Maurizio Cimadamore, Oracle/Java LangTools

“JMC is my main tool for getting insight into the rhythm of a JVM and the running
applications. … I have used recordings to resolve critical production issues caused by
latency, memory-leaks or threading.”

– Allan Thrane Andersen, Tryg

“looking all over for Java memory profiling tools. Realize Mission Control was sitting there
in java/bin the whole time!”

– @PerlinMandleBro

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

RebelLabs Java Tools and Technologies Landscape 2016,
Java Profiler Usage

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

”Java Mission Control profiling tool”

Probably:

• Data from Java Flight Recorder

• Visualized in Java Mission Control

8

What do they mean?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recorder (JFR) & Java Mission Control (JMC)

9

A brief overview

JMC

JRE

Low
overhead

JFR
Engine

JFR
Events

Recording data
myrecording.jfr

Control recordings
start/stop/dump

java -XX:+FlightRecorder JDK/bin/jmc

or Eclipse plug-ins

JDK/bin/jcmd <pid> <cmd>

java -XX:StartFlightRecording

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Java Mission Control
The graphical client

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Mission Control

• A tool suite for monitoring JVM behavior
– JMX console

• Real time monitoring

– Flight recorder
• Production time profiling and diagnostics

• Free for development and evaluation

– Tool usage is free

– Data creation in production requires a commercial license
• tiny.cc/javalicense

11

http://tiny.cc/javalicense

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

History of Java Mission Control

• JRockit
– JRockit Mission Control

– JRockit Flight Recorder

• Appeal (JRockit) BEA Systems Oracle Sun (HotSpot)

• Best JRockit features HotSpot JVM

• JFR and JMC released with Java 7u40 in 2013

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

JMC Installation and Startup

• Bundled with JDK
Windows/Linux: <JDK>/bin/jmc

Mac: (/usr/bin/) jmc

For additional logging, add options:

-consoleLog –debug

• Eclipse plugins
– Install from update site

http://oracle.com/missioncontrol, Eclipse Update Site

• Experimental plugins
– Install from within the JMC application or from

http://oracle.com/missioncontrol, Eclipse Experimental Update Site

13

http://oracle.com/missioncontrol
http://oracle.com/missioncontrol

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Experimental Plugins

• Dtrace
– JFR style visualization of data produced by DTrace

• JOverflow

– Memory anti-pattern analysis from hprof dumps

• JMX Console plugins

• Java Flight Recorder plugins
– WebLogic

– JavaFX

14

Downloadable from within Mission Control

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Java Flight Recorder
Low overhead profiling

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recorder

• High performance Event Recorder

• Build into the JVM
– Already available runtime information

– Measuring the real behavior, doesn’t disable JVM optimizations

• Very detailed information

• Extremely low overhead (about 1-2%)
– Can keep it always on and dump when necessary

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 17

A slightly more detailed overview

Java Flight Recorder (JFR) & Java Mission Control (JMC)

JMC

Java API

JVM
JVM

Events
JFR

Engine

Recording data
myrecording.jfr

Control recordings
start/stop/dump

java -XX:+FlightRecorder JDK/bin/jmc

or Eclipse plug-ins

JDK/bin/jcmd <pid> <cmd>

java -XX:StartFlightRecording

JFR Java
API

JFR JMX
APIJava

Events

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 18

Performance, performance, performance

Flight Recorder Inner Workings

Event

Event

Thread Buffer

JVM Events

Java API Events

Global buffer

Global buffer

Global buffer

When full, is copied into

Disk chunk

When full, is copied into

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Data collected by JFR

• Java application behavior
– Threads & locks

– I/O

– Exceptions

– etc.

• JVM behavior
– Allocation & garbage collection

– JIT Compiler

– etc.

• Events implemented by the different subsystem teams

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different kinds of events

• Instant event – e.g. Thrown exception, Thread start
– Something that happens at a single point in time

• Duration event – e.g. Garbage collection, Thread sleep

– Timing for something

– Configurable threshold

• Requestable event – e.g. Method profiling sample

– Polled from a separate thread with a specified frequency

– Configurable period

• Period and threshold settings impact the performance overhead

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Method sampling

• Sampling profiler
– Not logging every single call to your method

• Part of how we get the low overhead

• Detects hot methods

– Does not require threads to be at safepoints
• Startup flags can be used to give more accurate traces for inlined methods, but we recommend

avoiding them to keep performance up

-XX:+UnlockDiagnosticVMOptions -XX:+DebugNonSafepoints

– Not sampling threads calling native code

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Event Configuration Templates

• Predefined templates
– Default – designed to get as much data as possible while staying below 1% overhead

– Profile – even more information, about 2% overhead

• Can be overridden when starting from Mission Control

• Stored as XML files in <JRE>/lib/jfr/*.jfc

– Design your own from the Mission Control GUI

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different kinds of recordings

• Time fixed recordings (profiling recordings)
– Runs for a specified time

– Dumped to file when done, or opened automatically in the JMC GUI

– Example use case: doing a 1 minute recording to test performance under load

• Continuous recordings

– Runs until the JVM stops, or until explicitly stopped

– Dumped to file when requested or when the JVM stops (if enabled)

– Example use case: enable at startup and dump the last N minutes when something
has gone wrong

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

RebelLabs Developer Productivity Report 2015,
Java Performance Survey

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

RebelLabs Developer Productivity Report 2015,
Java Performance Survey

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings
More than one way

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Preparations

• Start the JVM that you want to record from
-XX:+UnlockCommercialFeatures

-XX:+FlightRecorder

• In Java 8u40 and later it is possible to enable at runtime if needed

– Using Java Mission Control

– Using jcmd

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using Mission Control

1. Find a JVM to record from in the JVM Browser

2. Double click the Flight Recorder node under the JVM

3. Follow the wizard

On Java 8u40 and later, automatic
enablement from JMC if startup
flags are missing.

28

Easy and intuitive

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using Startup Flags

• Time fixed
-XX:StartFlightRecording=delay=20s,duration=60s,

filename=C:\tmp\myrec.jfr,settings=profile,name=MyRecording

• Continuous with dump only on demand
-XX:StartFlightRecording=settings=default

• Continuous with dump on JVM exit
-XX:StartFlightRecording=settings=default

-XX:FlightRecorderOptions=dumponexit=true,

dumponexitpath=C:\tmp

• See documentation for Java options (google “java options”)
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

29

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using JCMD

Usage: jcmd <pid> <command>

• Starting a recording

jcmd 7060 JFR.start name=MyRecording settings=profile

delay=20s duration=2m filename=c:\tmp\myrecording.jfr

• Dumping a recording

jcmd 7060 JFR.dump name=MyRecording filename=C:\tmp\dump.jfr

• Unlocking commercial features (if not done with JVM startup flags)

jcmd 7060 VM.unlock_commercial_features

Use jcmd <pid> help to see other things you can do with jcmd

30

Useful for controlling JFR from the command line

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Creating Recordings Using JMX Console Triggers

• Start JMC

• Connect a JMX Console to your
application

• Configure and enable rules on the
triggers tab

• Recording will be started or dumped
when the trigger occurs

31

When real-time monitoring your application

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Recordings On Remote Production Systems

• Remote access
– Enable with –Dcom.sun.management.jmxremote... and connect with JMC

• Consider security!

– Run jcmd locally on the server and transfer the resulting JFR file to your workstation

• Choose when to enable JFR
– At startup

Allocates a small amount of memory for buffers.

– Dynamically
• Zero overhead at startup. Initialization overhead occurs when enabling. Might cause some classes to

be deoptimized.

• Good if you want to avoid restarting the JVM.

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Analyzing Recordings
Using the graphical client

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What the data can tell you

• Only you know what your application is supposed to be doing
– Batch job or real time trading

– Should the CPU usage be high or low?

– If you have a theory about what is wrong, then you can start your investigation from
there

• Not trivial to compare performance of different recordings
– You may want to add custom data for tracking e.g. transaction times

34

What questions do you want answered?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Analyzing Flight Recordings in JMC

• Preconfigured tabs

• Highlights various areas of
common interest
– Code

– Memory

– Threads

– etc.

35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Demo
Flight recorder startup and analysis

36

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Customization, Future, Links

37

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 38

import com.oracle.jrockit.jfr.*;

public class Example {
private final static String PRODUCER_URI = "http://www.example.com/demo/";
private Producer myProducer;
private EventToken myToken;

public Example() throws URISyntaxException, InvalidEventDefinitionException, InvalidValueException {
myProducer = new Producer("Demo Producer", "A demo event producer.", PRODUCER_URI);
myToken = myProducer.addEvent(MyEvent.class);

}

@EventDefinition(path="demo/myevent", name = "My Event",
description="An event triggered by doStuff.", stacktrace=true, thread=true)

private class MyEvent extends TimedEvent {
@ValueDefinition(name="Message", description="The logged important stuff.")
private String text;
public MyEvent(EventToken eventToken) { super(eventToken); }
public void setText(String text) { this.text = text; }

}

public void doStuff() {
MyEvent event = new MyEvent(myToken);
event.begin();
String importantResultInStuff = "";
// Generate the string, then set it...
event.setText(importantResultInStuff);
event.end();
event.commit();

}
}

Adding Your Own Events (unsupported)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Parsing Recordings (unsupported)

If JFR is not enabled, then the custom events give 0% overhead

39

Reusing the event instance (not thread safe)

...

private MyEvent event = new MyEvent(myToken);

public void doStuffReuse() {
event.reset();

event.begin();

String importantResultInStuff = "";

// Generate the string, then set it...

event.setText(importantResultInStuff);

event.end();

event.commit();

}

...

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Parsing Recordings (unsupported)

• The JDK parser
– import oracle.jrockit.jfr.parser.*;

– SAX style parser

• The JMC parser
– import com.jrockit.mc.flightrecorder.FlightRecording;

– DOM style parser

• http://hirt.se/blog/?p=446

40

Two unsupported options

http://hirt.se/blog/?p=446

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Built In GUI Editor (unsupported)

• Show view -> Designer

• Customize the existing GUI or
produce entirely new GUIs
for events

• Export the created GUI to
share it with others

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Future

• Flight recorder
– Supported API for creating events

– Performance enhancements

– Can write data to disk even in bad situations

– More events

• Java Mission Control
– Automated analysis of flight recordings

– Reworked JFR GUI

• See slides from JavaOne 2016 presentation by Marcus Hirt

– Java Mission Control and JFR in JDK 9: A Sneak Peek [CON1509]

42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Resources

• Home page
– http://oracle.com/missioncontrol (Click Discussion to find the forum)

– http://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/index.html

• Twitter
– @javamissionctrl

– @hirt

• Blog
– http://hirt.se/blog/

• Facebook
– https://www.facebook.com/javamissionctrl

43

http://oracle.com/missioncontrol
http://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/index.html
http://hirt.se/blog/
https://www.facebook.com/javamissionctrl

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Q&A

44

?

