
The Asynchronous
Uncoordinated Continuous
Delivery of 35+ uServices

Clayton Wells | Ocado Technology

Talk Programme

• Ocado. Where we’ve come from and where we
are going

• The Architecture needed to for Asynchronous
Uncoordinated Continuous Delivery

• The Development Practices that enable
Asynchronous Uncoordinated Continuous
Delivery

• Q&A

Ocado

 From a Online Grocery Company -> Technology
Company -> Technology Provider

->

At Ocado

• • Deployments only every few • Dozen of Deployments a Day.
weeks.

• • Contained dozens of stories • Contains Subtask of a Story.
and bug fixes.

• • Required days of testing. • Testing Fully Automated.
• • Always had bugs and required • Small Bug Free Deployments.

multiple hotfixes.
• • Rolling out a feature meant • Fully in Control of the

deploying to subset of servers. release programmatically.

Ocado.com (before OSP) Ocado Smart Platform (OSP)

The Architecture

● Stateless μServices

● Resilient

● Built in Fallback Strategies

Stateless μServices

● Statelessness

● Idempotent

● Single responsibility

● Keep databases local to uService

Resilient

• Not dependant on other systems to start up

• Don’t have processes built into the start cycle of

the server

• Recover gracefully when dependant systems

come online

Built in Fallback Strategies

• Build in how to do deal with unavailable services

as a feature of the system

• Store static data from other services locally (ie

configuration data)

• Hystrix, a nice tool for helping with fallback

strategies

Architecture Recap

Software Development
Practices

• Decoupling deployment and releases

• Backwards compatibility

• Versioning

• Feature Flags

• Clean up

 “Learn from yesterday, live for today,
hope for tomorrow. The important thing
is not to stop questioning.”

– Albert Einstein

Decoupling Deployment and
Releases

• Deploying code does not mean the releasing of

functionality/features

• Do as small deployments as possible

• Will need change in thinking on how you go

about coding a feature

• Keep on top of technical debt

Implement
Backwards
Compatible /
New Change

Deploy
Change

Update other
systems to use
change

Clean up
old/deprec
ated code

Release
feature by
turning it on

If feature is complete

Feature Flags

• Feature flags are your friend

• Decouples deployments from releases

• Allows controlled roll out of new code

• Quick easy rollbacks without the need to do

redeployments

Backwards Compatibility

• Wherever possible, update your code so that it

works the old way alongside the new way.

• Tests will ensure that the old way is still working

• Loosen restrictions, tighten restrictions

• Temporary state to be in.

Versioning

• When it is impossible to do the change in a

backwards compatible way, use versioning.

• Try to avoid as there is a lot of duplication and

more clean up

Cleanup

• Most important part of this approach

• Prevents technical debt build up

• Have as part of definition of done

• Allows smooth change over to new code

Conclusion

Questions?

