
@tlberglund

Kafka Streams
H E R A C L I T U S T E A C H E S

(A N D L E A R N S T O S T O P C R Y I N G !)

@tlberglund

Kafka Streams
H E R A C L I T U S T E A C H E S

(A N D L E A R N S T O S T O P C R Y I N G !)

Heraclitus
• Lived 535-475 BC in

Ephesus
• Wrestled with problems

of metaphysics
• Struggled with

depression
• Probably did not use

Kafka Streams

Heraclitus

• Tension of opposites
• Fire
• All things change
• “No one steps into the

same river twice.”

0.11 Exactly-once
semantics

0.10 Data processing (Streams API)

0.9 Data integration (Connect API)

Intra-cluster
replication

0.8

2012 2014 2015 2016 2017

Cluster mirroring0.7

2013

As developers, we want to build

not

APPS

INFRASTRUCTURE

• Scalable
• Elastic
• Fault-tolerant
• Stateful
• Distributed

We want our apps to be:

Where do I put my compute?

Where do I put my state?

Where is my code?
The actual question is

the

is a
KAFKA STREAMS API

TO POWER THE
BUSINESS

to build real-time applications
JAVA API

<— Not running inside brokers!

Brokers?
Still nope!

Before

Before

Before

After

After

After

this means you can

DEPLOY

YOU WANT
using whatever technology
ANYWHERE

your app

Things Kafka Streams Does
• Runs everywhere
• Clustering done for you
• Exactly-once processing
• Event-time processing
• Integrated database
• Joins, windowing, aggregation
• S/M/L/XL/XXL/XXXL sizes

An integration story?

For another time…

first, some

API
CONCEPTS

are
STREAMS

EVERYWHERE

are
TABLES

EVERYWHERE

Streams to Tables

Tables to Streams

Stream/Table Duality

33

Stream/Table Duality

KStream

KStream<Long, String> rawRatings = builder.stream(Serdes.Long(),
 Serdes.String(),
 "raw-ratings");

KStream<Long, Rating> ratings = rawRatings
 .mapValues(text -> Parser.parseRating(text))
 .map((key, rating) -> new KeyValue<Long, Rating>(rating.getMovieId(), rating));

KTable
KStream<Long, Float> numericalRatings = ratings.mapValues(rating -> rating.getRating());

KGroupedStream<Long, Float> ratingsByMovieId = numericalRatings.groupByKey();

KTable<Long, Long> ratingCount = ratingsByMovieId.count();
KTable<Long, Float> ratingSum = ratingsByMovieId.reduce((r1, r2) -> r1 + r2);
KTable<Long, Float> ratingAvg = ratingSum.join(ratingCount,
 (sum, count) -> sum.floatValue()/count.floatValue());

DEMO

Remember, we want to build

not

APPS

INFRASTRUCTURE

Fault Tolerance

Elasticity

Elasticity

Econimcal at small
and large scale

Shared State
Probably failing at life

Shared State Adulation of peers

Shared State

Lower

infrastructure

costs…

THANK
YOU!

@tlberglund

