o \ y 7 N\ F o\ \

r=n+1/2—/n+1/2 bO' R| = ()(ft;n | (z)| dz) : (.’)(.]‘Dr:f”(:r)'-('j;r — [7 f'(x) dl,) =
O(f(n)—"f()*f(O)) = O(f(r)""\/'—1)-

6. It is n™ e\(p n+ B a/n —a?/2n® + O(n™?%))), etc.
Qﬁm I;tcaitmg C omplex ity
'e can {isgard ter : u 2™ with dm — n > us Xpansio the pgoc uct

orithm Performance in.the.New Machine Age
,,mlf'4_£x—l.--'~=__rjava)QnggI@cmber(ZﬂlZ) (z-2).

6 3406 20
8. (Solution by Miklés Simonovits.) We have |f(z)| < if = is large enough. Let
R(z) = [”f“'(,—9(u.) M'aulﬁlﬁe(hNa(ftalnfn the two given integrals,

e |
where g(u, z) = u—-—rln(l—-—u r) and h(u,z) = u? - u3/3z° A (—=1) " u™" me™

Notice that g(u,z) > 0 @mauwcetnaft\almw 9(u,7) = hlu,2) +

O(u™*/z™).

a b N .
According to the mean value theorem, e¢“ — e’ = (a — b) e® for some ¢ between
a and b. Therefore |e* — e’| < |a — b| when a,b < 0. It follows that

1 f(z) Mz™ w1 g,
= / g(u,z) — h(u,z)| du = O(/ —)
_’f('r"l MaxT £

O((\rn-l- IT—nl) - ()()

R(z)

Maurice Naftalin

Java 5
L gimew |

Speed Up the Java Development Process

ORACLE

Developer
Champion

Mastering Lambdas:
Java Programming in a
Multicore World

Generics

and Collections

Best Practices for Using Lambda Expressions
and Streams

Oracle
Maurice Naftalin Press

Vaurice Naflalin Forid by B st

O’REILLY. & Philip Wadler Copyrighted Material

Copyrighted Material

2014 2015

Not Your Father’s Complexity

g — p— — e —— e e ——————————
— e —— ———— — = = =

* Original title for this talk

 Mental model of program performance

 Number of instructions executed

- Why we need to change this, and how

e

professmnally speaklng'

Don Knuth (1938 —), Creator of TeX,
Turing Award laureate,...

Author of The Art of Computer Programming

VVhat RHe Really Thinks

B e ————— e —— ———— —————— e e ————————————

“We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil”

| What S Computatlonal CompIeX|ty7

- an algorithm with time complexity O(g(n)) will complete in less than
c * g(n) steps, for some c and sufficiently large n

- e.g. Knuth, on multiple list insertion sort: execution time is
3.5N% + 245N + 4M + 2

» but we only care about the N? term!

_Why Bother!

e e — —- e —— B —— i — e — e ———— e e e e —— ——— e
. ———— S — — S J— ——— e — _ — _ = ——— — ——— — =

It’s the traditional way of evaluating algorithms!

Complexity Effect of doubling N
O(l) Unchanged
O(log N) Increased by a constant
O(N) Doubled

O(N log N) Doubled + an amount proportional to N

O(N?) Increased fourfold

— ___ _ _ — e o — ——— e —

Who Is Your Father’

— p— ———— — — —— ——— — — _ — ———— —————— — e —

Another Candldate

Joshua Bloch (1961 —),Author of Effective Java

Author of the Java Collections Framework

Collection Interfaces

List Set
\ 3 : | v
""""""""""""""""" | SortedSet g : '

Abstract Classes| -

Linked ?
AbstractList

AbstractSequentialList

AbstractCollection

|

nkedList PriorityQueue

AbstractSet

VVhat Josh Told Me...

e ————— e ———— e — ——— _ — ——————— ——————

* the Java Collections Framework is interface-based

» choose the interface (Set, List, Queue) that meets your
requirement

* then choose the implementation with best performance for your
usage scenario

» for example: which L1st implementation!?
» ArrayList, LinkedList, CopyOnWriteArraylList?

add() remove(0)

ArrayList O(1) O(1) O(N)
LinkedList O(N) O(1) O(1)
COW-ArrayList gelg) O(N) O(N)

Did this ever make sense?
— Yes, on these assumptions:
® can ignore constant factors
* all instructions have the same duration
* memory doesn’t matter
* instruction execution dominates performance

‘Was Complexity Study Ever Worth It!

_ == = —— = - — e =~ = ————— —

E—— N e —— —

Of course it was!

But instruction execution is only one bottleneck. Many others:
* Disk/Network
* Garbage Collection
* Resource Contention

and more...

e e

‘Was Complexity Study Ever Worth It!

_ — = —— = - — e =~ = ————— —

— — _ ——— o ———— e —

Of course it was!

But instruction execution is only one bottleneck. Many others:
* Disk/Network
* Garbage Collection
* Resource Contention

and more...

‘Was Complexity Study Ever Worth It!

_ == = —— = - — e =~ = ————— —

E—— N e —— —

Of course it was!

But instruction execution is only one bottleneck. Many others:
* Disk/Network
* Garbage Collection
* Resource Contention

and more...

> .

pre- 1980

— o R - p— = S ———— —_——— —— = — —— = — — — = il E— o — ——e——— =
s . S — — e o — ——— e __ I —— — E— il ——— — = = -

The Golden Age of Complexity

DRAM Cost ($/GB)

1980 1985 1990 1995 2000 2005 2010

The Golden Age of Complexity

Memory way

too expensive, VWhat
SO paging costs happened!
dominate

1980 1985 1990 1995 2000 2005 2010

Performance

The Golden Age of Complexity

100,000 -
10,000 o e e B e e e S e o o o e S o o o o e S e e e PR S o904
1000 st e e T e T e S S S S A ah I“
Processor how to bridge
___ i ?
100 e S this gap?
4 () =3 T e ey e e PR e SCOPE ey l
Memory ¢
| o= ‘

I | | |
1980 1985 1990 1995 2000 2005 20

= - — —

Keeping the Cores Running Today

L2 Cache ' ' L2 Cache |

‘ L3 (Last-Level) Cache

T e e | e e e — e —————————— — =

The

SUPERFAST << Advantages >>

SUPER EXPENSIVE
11Ny capacity | Speed Power Cost

PROCESSOR
REGCISTER

CPU CACHE
LEVEL 1 (L) CACHE FASTER
LEVEL 2 (L2) CACHE EXPENSIVE
LEVEL3(L3) CACHE SMALL CAPACITY
PHYSICAL MEMORY FAST ,
RANDOM ACCESS PRICED REASONABLY
MEMDORY (RAM) AVERAGE CAPACITY
______ iR)
SOLID STATE MEMDRY AVERAGE SPEED
PRICED REASONABLY
NON-VOLATILE FLASH-BASED MENMORY AVERAGE CAPACTTY
MECHANICAL sLow
HARD DRIVES CHEAP
LARGE CAPCITY

L

The Memory Hierarchy

— e —_ — — B ——— s —— e — - — . e ————— — _ — -
e = — I ——— PRS- I — — —_— ———— . — _ =— ~ e —————

LM

FIA P

g
B 4
g
g
‘%
2
-]
§
g

 3BXSMONGOLIA MOHION WYYAAH 238

1977

e g — — - -

_ Cache Efects Often Dominate

p— — e ———— e o — e ——
_ g e —— — - - -

* Main memory retrieval costs ~100x L| access
- 2-300x register access

* Typical programs have 95% hit rate
- it’s the other 5% that hurts

* Why cache misses! Two possible reasons (many others):
- insufficient capacity
- failure of prefetching
- unpredictable data access patterns!

_ Stride Prefetching

@taz 64-byte cachm

/

prefetch

Processor

|

e ——————— ————— — —_—— —

@ta: 64-byte cachm

/

Processor

||

Virtual address
(page index + offset)

Translation Buffer (TLB)

Physical address

Page index Page address

MITITLPTTTINE

How Does Caching P! mplexity?

— = —— = - — e =~ = ————— —

Sample case: traversing a list
— O(n), obviously

First issue: data size. Let’s compare:

e LinkedLi1st

® primitive array

— _ —_ —

list length (K)
performance (ns/op)

CPI (clockticks/instrn)

cvcles

instructions
L1-dcache-load-misses
L1-dcache-loads
L1-dcache-stores
LLC-load-misses
LLC-loads
dTLB-load-misses
dTLB-loads
dTLB-stores

F— — — = = = — =

7 63
7.25 9.03 20.87 29.07
0.32 0.41 0.93 1.33
events/operation
17.97 22.77 51.32 /2.66
56.08 55.88 54.96 54.49
1.18 1.83 1.87 .
18.94 19.39 18.88 18.22
12.00 12.18 11.99 11.15
0 0 0.41 1.31
0 0.72 1.33 1.56
0 0 0 0.90
19.05 19.00 19.15 18.09
12.04 12.09 12.16 11.02

VVhats Going On?

— ___ —— ——

———— —— = = = —— _— — ———— ——————

LinkedList: node size is 24 bytes

Running on Intel Core i5:

Each new list item is 40 bytes (24 + 16)
— LI cache will be full at <IK items

ArraylList is better, but not much: each new item is 20 bytes

Primitive Array

— e — — = — —=—

list length (K) L 7 63 511
performance (ns/op) 3.62 3.65 3.65 3.66
CPI 0.30 0.30 0.30 0.31
events/operation
cycles 9.09 9.16 9.10 9.13

instructions 30.24 30.13 29.94
IL1-dcache-load-misses 0.0C D.0C
L1-dcache-loads 12.00 12.00 11.97 12.14
L1-dcache-stores 0.00 6.02 6.02 6.04
LLC-load-misses 0.00 0.00 0.00 0.00
LLC-loads 0.00 0.00 0.00 0.00
dTLB-load-misses 0.00 0.00 0.00 0.00
dTLB-loads 12.17 12.00 11.90 12.06
dTLB-stores 6.03 5.99 5.98 6.05

T e e . e e e — — —————————

How Does Caching Play With Complexity?

— = —— = - — e =~ = ————— —

Second issue: data locality
Two different problems:

- Data density: how much of your 64-byte cache
lines is data that you actually need!?

- Prefetching: are you giving the processor a
chance to help?

Populating LinkedList “Naturally™

_ == = —— = - — e =~ = =

—————— e —

AWAVAWA

HENEENENEMENE EE. -

for (int i = @; i < LIST LENGTH; i++) {
linkedList.add(random.nextInt()):
+

S — e ——— ———————— e — —— . ——————
— I —— —

Populating LinkedList Randomly

for (int 1 = 0; 1 < LIST LENGTH;
linkedList.add(arrayList.

hosea-2:solutions mpn$

Poor Unloved LinkedList..

—— — ——— e —

Joshua Bloch &
Replying to @jerrykuch

@jerrykuch @shipilev @ AmbientLion Does
anyone actually use LinkedList? | wrote it, and

| never use It.
176 114 BEGaE"esD)

710 PM - 2 Apr 2015

e ——— e

— —— = _— — —_— — = -

| HashMap

HashMap collision

———— —— = = = —— _— — ———— ——————

ImmutableCollections.MapN

= . - e ———— p———————— ———————— e ——— e ——————
— _ - —_— ——— _ - = =

HEEEEEEEEEEEEEEE RN
Map<Integer,Integer> immutableMap = Map.ofEntries(
Map.entry(512,1024),

Map.entry(513,1026),
Map.entry(514,1028));

Reducing Footprint

———— ———— e ———————— —— — — — —————— ——————

Third-party collections frameworks usually have a
focus on low memory footprint:

— Eclipse Collections

— fastutil

— Vavr (formerly Javaslang)

— Apache Commons Collections
— Guava

— [rove

— Argon

Improving Data Locality

B e ————— e —— ——————— ———— e e ——————

- 3rd-party frameworks (previous slide) often support primitive collections

» ObjectLayout

- StructuredArray — like a C-style “array of struct”
- also arrays as part of objects, and cohered aggregates

* Roaring Bitmaps

- compressed bitmaps, very fast

* Project Valhalla

- language-level solution for value objects and primitive collections

Conclusion, of sorts...

B e —————— ————— . ————— = ————

Performance mostly doesn’t matter
... but when it does matter, it really matters!

Every performance improvement represents a tradeoff

Algorithm complexity is still important
... but so is

network/database performance,
GC,

resource contention,

caching

So actually it is your father’s complexity — just a lot more complex than before!

