
Complicating Complexity
Algorithm Performance in the New Machine Age

JavaOne, October 2017

Maurice Naftalin
@mauricenaftalin

Maurice Naftalin

Java 5 Java 8

2013 2014 2015

Not Your Father’s Complexity

• Original title for this talk

• Mental model of program performance

• Number of instructions executed

• Why we need to change this, and how

Don Knuth (1938 –), Creator of TeX,  
Turing Award laureate,…

Author of The Art of Computer Programming 

Who Is Your Father?
…professionally speaking!

What He Really Thinks

“Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered.

“We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil”

• an algorithm with time complexity O(g(n)) will complete in less than
c * g(n) steps, for some c and sufficiently large n

• e.g. Knuth, on multiple list insertion sort: execution time is  
 3.5N2 + 24.5N + 4M + 2

• but we only care about the N2 term!

What is Computational Complexity?

It’s the traditional way of evaluating algorithms! 
 
 
 
 
 
 
 

Why Bother?

Complexity Effect of doubling N

O(1) Unchanged

O(log N) Increased by a constant

O(N) Doubled

O(N log N) Doubled + an amount proportional to N

O(N2) Increased fourfold

… …

… …

… …

Who Is Your Father?
Another Candidate:

Joshua Bloch (1961 –), Author of Effective Java

Author of the Java Collections Framework 

What Josh Told Me…

• the Java Collections Framework is interface-based

• choose the interface (Set, List, Queue) that meets your
requirement

• then choose the implementation with best performance for your
usage scenario

• for example: which List implementation?
• ArrayList, LinkedList, CopyOnWriteArrayList?

Which List Implementation?

Did this ever make sense?
– Yes, on these assumptions:

• can ignore constant factors
• all instructions have the same duration
• memory doesn’t matter
• instruction execution dominates performance

get() add() remove(0)
ArrayList O(1) O(1) O(N)
LinkedList O(N) O(1) O(1)

COWArrayList O(1) O(N) O(N)

Was Complexity Study Ever Worth It?
Of course it was!
But instruction execution is only one bottleneck. Many others:

• Disk/Network
• Garbage Collection
• Resource Contention

and more…

Was Complexity Study Ever Worth It?
Of course it was!
But instruction execution is only one bottleneck. Many others:

• Disk/Network
• Garbage Collection
• Resource Contention

and more…

Was Complexity Study Ever Worth It?
Of course it was!
But instruction execution is only one bottleneck. Many others:

• Disk/Network
• Garbage Collection
• Resource Contention

and more…

pre-1980

pre-1980

1980 1985 1990 1995 2000 2005 2010

DRAM Cost ($/GB)

1,000,000

1,000

10

The Golden Age of Complexity

1980 1985 1990 1995 2000 2005 2010

DRAM Cost ($/GB)

1,000,000

1,000

10

Memory way
too expensive,
so paging costs

dominate

Cheap enough
to execute
algorithms
in-memory

What
happened?

The Golden Age of Complexity

The Golden Age of Complexity

how to bridge
this gap?

Keeping the Cores Running Today

L1: ~0.5ns 
L2: ~10ns 
Memory: ~100ns

The Memory Hierarchy

The Memory Hierarchy

Cache Effects Often Dominate
• Main memory retrieval costs ~100x L1 access 

 - 2-300x register access

• Typical programs have 95% hit rate 
 - it’s the other 5% that hurts

• Why cache misses? Two possible reasons (many others): 
 - insufficient capacity 
 - failure of prefetching 
 - unpredictable data access patterns!

Processor

L1 data: 64-byte cache lines

prefetch

Stride Prefetching

Processor

L1 data: 64-byte cache lines

4K pages

Translation Buffer (TLB)

Page index Page address

Virtual address
(page index + offset)

Physical address

How Does Caching Play With Complexity?

Sample case: traversing a list

 – O(n), obviously

First issue: data size. Let’s compare:

• LinkedList

• primitive array

list length (K) 1 7 63 511
performance (ns/op) 7.25 9.03 20.87 29.07

CPI (clockticks/instrn) 0.32 0.41 0.93 1.33
events/operation

cycles 17.97 22.77 51.32 72.66
instructions 56.08 55.88 54.96 54.49
L1-dcache-load-misses 1.18 1.83 1.87 2.65
L1-dcache-loads 18.94 19.39 18.88 18.22
L1-dcache-stores 12.00 12.18 11.99 11.15
LLC-load-misses 0 0 0.41 1.31
LLC-loads 0 0.72 1.33 1.56
dTLB-load-misses 0 0 0 0.90
dTLB-loads 19.05 19.00 19.15 18.09
dTLB-stores 12.04 12.09 12.16 11.02

LinkedList

What’s Going On?

LinkedList: node size is 24 bytes

Running on Intel Core i5:

Each new list item is 40 bytes (24 + 16) 
 – L1 cache will be full at <1K items

ArrayList is better, but not much: each new item is 20 bytes

L1 data 32K

L2 256K

L3 3M

Primitive Array

list length (K) 1 7 63 511
performance (ns/op) 3.62 3.65 3.65 3.66

CPI 0.30 0.30 0.30 0.31
events/operation

cycles 9.09 9.16 9.10 9.13
instructions 30.24 30.13 29.94 29.85
L1-dcache-load-misses 0.00 0.01 0.06 0.06
L1-dcache-loads 12.00 12.00 11.97 12.14
L1-dcache-stores 6.00 6.02 6.02 6.04
LLC-load-misses 0.00 0.00 0.00 0.00
LLC-loads 0.00 0.00 0.00 0.00
dTLB-load-misses 0.00 0.00 0.00 0.00
dTLB-loads 12.17 12.00 11.90 12.06
dTLB-stores 6.03 5.99 5.98 6.05

How Does Caching Play With Complexity?

Second issue: data locality

Two different problems:

- Data density: how much of your 64-byte cache
lines is data that you actually need?

- Prefetching: are you giving the processor a
chance to help?

Populating LinkedList “Naturally”

for (int i = 0; i < LIST_LENGTH; i++) {
 linkedList.add(random.nextInt());
}

Populating LinkedList Randomly

for (int i = 0; i < LIST_LENGTH; i++) {
 linkedList.add(arrayList.get(randomPos));
}

“Demo”

Poor Unloved LinkedList…

HashMap

Node Node

hashCodehashCode

64 bytes

HashMap collision

Node Node

hashCode

ImmutableCollections.MapN

Map<Integer,Integer> immutableMap = Map.ofEntries(
Map.entry(512,1024),
Map.entry(513,1026),
Map.entry(514,1028));

Reducing Memory Footprint

Third-party collections frameworks usually have a
focus on low memory footprint:

– Eclipse Collections
– fastutil
– Vavr (formerly Javaslang)
– Apache Commons Collections
– Guava
– Trove
– Argon

Improving Data Locality
• 3rd-party frameworks (previous slide) often support primitive collections

• ObjectLayout 
 - StructuredArray – like a C-style “array of struct” 
 - also arrays as part of objects, and cohered aggregates

• Roaring Bitmaps 
 - compressed bitmaps, very fast

• Project Valhalla 
 - language-level solution for value objects and primitive collections

Conclusion, of sorts…

Performance mostly doesn’t matter 
 … but when it does matter, it really matters!

Every performance improvement represents a tradeoff

Algorithm complexity is still important 
 … but so is

• network/database performance,
• GC,
• resource contention,
• caching

So actually it is your father’s complexity – just a lot more complex than before!

