
09:54 © 2005-2017 hello2morrow 1

How to Organize your Code

Alexander v. Zitzewitz
a.zitzewitz@hello2morrow.com

blog.hello2morrow.com
@AZ_hello2morrow

mailto:a.zitzewitz@hello2morrow.com

The single best thing you can do for the long term
health, quality and maintainability of a non-trivial

software system is to carefully manage and control the
dependencies between its different elements and

components by defining and enforcing an architectural
blueprint over its lifetime.

13.10.2017 © 2005-2017, hello2morrow 2

Code Organization Equals Dependency Management

Because, if you don’t…

13.10.2017 © 2005-2017, hello2morrow 3

Another architecture derailed…

13.10.2017 © 2005-2017, hello2morrow 4

Architecture of Apache-Cassandra (or what is left of it)

Reminds me of…

13.10.2017 © 2005-2017, hello2morrow 5

Why architectures tend to erode…

Very hard to see from the perspective of the developer
Software-Architects rarely use tools to visualize and manage
dependencies
If they even describe architecture, it is often informal (PowerPoint, Wiki
etc.)
That means it is hard to check conformity of code to architectural rules
Rules that are not enforced will be broken
Often there are no clearly defined quality and architecture standards
that must be met for a software to be considered “done”.
Agile projects consider architecture as a side effect of a user story
Who has time for this??

13.10.2017 © 2005-2017, hello2morrow 6

Now add Micro-Services to this mix

Splitting a messy monolith into Micro-Services will move the
mess to the network layer
Dependency management between services becomes even
more important
Avoid service loops – no cyclic dependencies between services
We will need a way to visualize and restrict dependencies
between services
Static analysis can be useful here

13.10.2017 © 2005-2017, hello2morrow 7

Why architectural debt is so toxic

Category of TD Repair Cost Visible

Impact

Maintainability

Impact

Programming Low Medium Mostly low
Testing Potentially High High Medium
Local/Global Metrics Low / High Low Low / High
Architecture Very High Low Very High

13.10.2017 © 2005-2017, hello2morrow 8

Agile Development and Architecture

The agile approach does not automatically create maintainable
and well architected systems. Often the opposite is true.
Ongoing management of technical debt is considered to be a
critical success factor for high quality and maintainable
software systems even by promoters of the agile approach
Architectural debt is a very toxic form of technical debt
That challenges the idea that software development should
almost exclusively be driven by business value
Project size has obviously an important influence

13.10.2017 © 2005-2017, hello2morrow 9

09:54 © 2005-2017, hello2morrow 10

Architectural Debt – Symptoms (Robert C. Martin)

Rigidity – The system is hard to change because every change
forces many other changes.
Fragility – Changes cause the system to break in conceptually
unrelated places.
Immobility – It's hard to disentangle the system into reusable
components.
Viscosity – Doing things right is harder than doing things wrong.
Opacity – It is hard to read and understand. It does not express
its intent well.

Overall: “The software starts to rot like a bad piece of meat”

Do you manage Technical/Architectural Debt?

Do you have binding rules for code quality?
Do you measure quality rule violations on a daily base?
Is your architecture defined in a formal way?
Do you measure architecture violations on a daily base?
Does quality management happen at the end of development?
Does your current QM lead to sustainable results?
Are there incentives for writing great code?

13.10.2017 © 2005-2017, hello2morrow 11

Code organization equals architecture
Define your architecture in a formal and enforceable way (i.e.
use a DSL to describe it)
Use tools to check for violations of architecture rules, ideally with
every commit or directly in the IDE
Broken architecture rules have to be fixed while it is still easy to
fix them
Avoid cyclic dependencies between packages or higher level
artifacts
Invest about 20% of all development and maintenance effort into
code hygiene and architecture

13.10.2017 © 2005-2017, hello2morrow 12

Example: Order Microservice

13.10.2017 © 2005-2017, hello2morrow 13

First step: think about package naming

Use functionality as top-level discriminator

com.hello2morrow.ordermanagement.order
com.hello2morrow.ordermanagement.customer
com.hello2morrow.ordermanagement.product

13.10.2017 © 2005-2017, hello2morrow 14

Step 2: High level architecture (in DSL)

13.10.2017 © 2005-2017, hello2morrow 15

Step 3: Layering of major elements

13.10.2017 © 2005-2017, hello2morrow 16

Formal description of Layering:

13.10.2017 © 2005-2017, hello2morrow 17

Step 4: Putting everything together

13.10.2017 © 2005-2017, hello2morrow 18

Final details

13.10.2017 © 2005-2017, hello2morrow 19

Advantages of a DSL

Easy to read and understand
Works well with version control systems and can be diffed
Can be changed without access to a tool
More powerful than just drawing boxes
Different aspects can be described in independent files
Architecture diagrams can be generated
Architecture files can be generated from diagrams

13.10.2017 © 2005-2017, hello2morrow 20

Components

A component is the atomic element of architecture
Usually a single source file, in C/C++ a combination of header
and source files
Is addressed via the relevant parts of its physical location

13.10.2017 © 2005-2017, hello2morrow 21

Patterns address groups of components

Artifacts

Artifacts can contain components or other artifacts
Artifacts have interfaces and connectors
An interface is an incoming port granting access to a subset of
components in artifact
A connector is an outgoing port that can be connected to an
interface of another artifacts
Connections are only possible between connectors and
interfaces
Each artifact has a default connector and a default interface,
both containing all components in the artifacts
User can restrict the default connector and the default interface

13.10.2017 © 2005-2017, hello2morrow 22

How to design a good architecture?

Divide and conquer is your friend
Try to split your system into not more than 10 top level elements
Then split those elements internally
Use patterns wherever possible
Graphs with 7 or less elements are much easier to understand
Therefore when splitting try to stick around 7 sub-elements or
less
The fewer allowed dependencies the better (increases flexibility)

13.10.2017 © 2005-2017, hello2morrow 23

Good architecture example

13.10.2017 © 2005-2017, hello2morrow 24

Another bigger example live

13.10.2017 © 2005-2017, hello2morrow 25

Q & A

a.zitzewitz@hello2morrow.com
blog.hello2morrow.com

@AZ_hello2morrow

