

About Me
• Masters in Electrical and Computer Engineering

• Java/JVM/GC performance engineer
• Code Karam LLC

• I have worked with Oracle, Sun, AMD …
(https://www.linkedin.com/in/monicabeckwith/)
• JVM heuristics, generation of optimized JIT-ted code, GC

performance
• I used to work in the capacity of Garbage First GC performance lead

@Oracle.

Agenda

• Setting the stage

• An introduction to monitor locking

• JVM improvements to locking

• Building a problem statement

©2017 CodeKaram2

Agenda

• Performance engineering approaches

• Choosing the right approach!

• Top-down or Bottom-up?

• Building our arsenal!

©2017 CodeKaram3

Agenda

• Observing the targeted improvements

• Demo comparing JDK 9 with JDK 8

• Summarizing the observations

©2017 CodeKaram4

Setting The Stage

©2017 CodeKaram5

Locks

©2017 CodeKaram6

Uncontended Locks

©2017 CodeKaram7

A single thread ‘t’ is executing a synchronized
method

Uncontended Locks

©2017 CodeKaram8

• Deflated locks

• aka light weight locks

• Compare and Swap (CAS) stores pointer to a lock

record in the object header.

Contended Locks

©2017 CodeKaram9

A different thread ‘u’ wants to enter the
synchronized method that is already locked by

thread ‘t’

Contended Locks

©2017 CodeKaram10

• Inflated locks

• aka heavy weight locks

• Slower path

• Object monitors maintain their wait-sets

Contended Locks

©2017 CodeKaram11

This is a heavy weight lock also known as inflated lock

Object Monitor maintains “WaitSet” for threads waiting for the

contended lock

Java Monitors

©2017 CodeKaram12

Wait
Q Object

Monitor

Enter

Exit

Q

Wait Set

©2017 CodeKaram13

•A set of threads

•At creation – empty set of threads

•Can be manipulated only by:

•Object.wait, Object.notify, Object.notifyAll

Java Monitors

©2017 CodeKaram14

Wait
Q Object

Monitor

Enter

Exit

Q

Wait

Notify

Locking Improvements in
OpenJDK HotSpot VM

©2017 CodeKaram15

©2017 CodeKaram16

•Biased Locking

•Lock Elision

•Lock Coarsening

•Contended Locking - Quick Path

©2017 CodeKaram17

©2017 CodeKaram18

Building a Problem
Statement

©2017 CodeKaram19

Contended Locking
Improvements - Summary

©2017 CodeKaram20

“Improve the performance of contended Java object monitors”

©2017 CodeKaram21

“Improve the performance of contended Java object monitors”

Contended Locking
Improvements - Summary

Speed Up Targets

©2017 CodeKaram22

• Java monitor enter operations

•PlatformEvent::unpark()

• Java monitor exit operations

• Java notify/notifyAll operations

Speed Up Targets

©2017 CodeKaram23

•Java monitor enter operations

•…

Java Monitor Enter Operation

©2017 CodeKaram24

Runtime –
contention / inflated lock

?

ObjectMonitor::enter

ObjectSynchronizer::slow_enter

Java Monitor Enter Operation

©2017 CodeKaram25

Runtime –
contention / inflated lock

?

ObjectMonitor::enter

ObjectSynchronizer::slow_enter

ObjectSynchronizer::quick_enter

Performance
Engineering Approaches

©2017 CodeKaram26

©2017 CodeKaram27

Performance
Engineering Approaches

Top-down approach Top-down approach

Top-Down Approach

28

I HAVE the power!!

… to modify the code

©2017 CodeKaram

Top-Down Approach

29

OS

Hardware

Application Ecosystem

Application

JRE

JVM

©2017 CodeKaram

Top-Down Approach

30

Application Ecosystem

Application

OS

Hardware

JRE

JVM

Platform

©2017 CodeKaram

When Do You Apply the Top-Down
Approach?

©2017 CodeKaram31

When you are trying to improve your application

Bottom Up Approach

32

I NEED the power!!

… to stress the platform

©2017 CodeKaram

Top Down Approach - Process

• Step 1Monitor

• Step 2 Profile

• Step 3Analyze

• Step 4 Tune +
Apply

Bottom-Up Approach

34

OS

Hardware

Application Ecosystem

Application

JRE

JVM

©2017 CodeKaram

Bottom-Up Approach

35

Application Ecosystem

Application

OS

Hardware

JRE

JVM

Platform

©2017 CodeKaram

When Do You Apply the Bottom-Up
Approach?

©2017 CodeKaram36

When you are trying to improve your platform

Performance
Engineering Process

©2017 CodeKaram37

• Step 1Monitor

• Step 2 Profile

• Step 3Analyze

• Step 4 Tune +
Apply

38 ©2017 CodeKaram

Choosing The Right
Approach …

©2017 CodeKaram39

Improve the JVM

What Are We Trying To Do?

©2017 CodeKaram40

The Bottom-Up
Approach

Hence We Choose…

©2017 CodeKaram41

Building Our Arsenal

©2017 CodeKaram42

Where Do We Start?

©2017 CodeKaram43

•Know what you are stressing

•Get/ write the appropriate workload/ application

•Get/write the appropriate tools

Know What You’re
Stressing…

©2017 CodeKaram44

Remember Our Speed Up
Targets?

©2017 CodeKaram45

• Java monitor enter operations

•PlatformEvent::unpark()

• Java monitor exit operations

• Java notify/notifyAll operations

Get/Write The
Appropriate

Workload/Application
…

©2017 CodeKaram46

Benchmarking

©2017 CodeKaram47

LockLoops-JSR166-Doug-Sept2009 (was LockLoops):

The benchmark compares multiple locking techniques

For our purpose, we just need to test the contended locks.

Contended Lock Benchmarking

©2017 CodeKaram48

private static class BuiltinLockLoop extends LockLoop {
final int loop(int n) {

 int sum = 0;
 while (n-- > 0) {
 synchronized (this) {
 v = LoopHelpers.compute1(v);
 }
 sum += LoopHelpers.compute2(v);
 }
 return sum;
 }
 }

©2017 CodeKaram49

private static class BuiltinLockLoop extends LockLoop {
final int loop(int n) {

 int sum = 0;
 while (n-- > 0) {
 synchronized (this) {
 v = LoopHelpers.compute1(v);
 }
 sum += LoopHelpers.compute2(v);
 }
 return sum;
 }
 }

Contended Lock Benchmarking

Where to Next?

©2017 CodeKaram50

Ensure that you are in fact measuring contended object monitor

performance!

How Do We Do That?

©2017 CodeKaram51

Bypass biased locking: Use -XX:-UseBiasedLocking

Bypass stack based locking: Use -XX:+UseHeavyMonitors

Get/Write The
Appropriate Tools …

©2017 CodeKaram52

Oracle Developer
Studio Performance

Tool

©2017 CodeKaram53

Profiling with ‘collect’

©2017 CodeKaram54

• -j on: default for when target is Java

• -p on: default clock-profiling rate of ~100 samples/second

• -H on: heap tracing

• -t <duration>: time over which to record data

• -h <ctr_def>…: specify HW counter profiling

Observing The
Targeted

Improvements

©2017 CodeKaram55

Speed Up Targets

©2017 CodeKaram56

• Java monitor enter operations

•PlatformEvent::unpark()

• Java monitor exit operations

• Java notify/notifyAll operations

Demo - Comparing
Contended Locking in

JDK 9 to JDK 8

©2017 CodeKaram57

Summarizing the
Observations

©2017 CodeKaram58

Speed Up Targets

©2017 CodeKaram59

•Java monitor enter operations

•…

Java Monitor Enter Operation

©2017 CodeKaram60

Runtime –
contention / inflated lock

?

ObjectMonitor::enter

ObjectSynchronizer::slow_enter

Java Monitor Enter Operation

©2017 CodeKaram61

Runtime –
contention / inflated lock

?

ObjectMonitor::enter

ObjectSynchronizer::slow_enter

ObjectSynchronizer::quick_enter

Java Monitor Enter Operation

©2017 CodeKaram62

©2017 CodeKaram63

JDK 9 Exclusive Time JDK8 Exclusive Time Method Name

26.038 50.415 ObjectMonitor::enter(Thread*)

Monitor Enter

JDK 9 Inclusive Time JDK8 Inclusive Time Method Name

58.201 87.621 ObjectMonitor::enter(Thread*)

©2017 CodeKaram64

JDK 9 Exclusive Time JDK8 Exclusive Time Method Name

32.723 0 ObjectSynchronizer::quick_enter

Quick Enter

JDK 9 Inclusive Time JDK8 Inclusive Time Method Name

32.723 0 ObjectSynchronizer::quick_enter

Hs-9/src/share/vm/runtime/synchronizer.cpp
Hs-9/src/share/vm/runtime/sharedRuntime.cpp

©2017 CodeKaram65

JDK 9 Exclusive Time JDK8 Exclusive Time Method Name

10.317 20.604 ObjectSynchronizer::slow_enter

Slow Enter

JDK 9 Inclusive Time JDK8 Inclusive Time Method Name

26.368 39.087 ObjectSynchronizer::slow_enter

Speed Up Targets

©2017 CodeKaram66

•PlatformEvent::unpark()

•…

©2017 CodeKaram67

JDK 9 Exclusive Time JDK8 Exclusive Time Method Name

0.060 0.150 os::PlatformEvent::unpark()

Unpark

JDK 9 Inclusive Time JDK8 Inclusive Time Method Name

2.942 3.973 os::PlatformEvent::unpark()

Speed Up Targets

©2017 CodeKaram68

•Java monitor exit operations

•…

©2017 CodeKaram69

JDK 9 Exclusive Time JDK8 Exclusive Time Method Name

0.470 0.340 ObjectMonitor::exit(bool, Thread*)
0.040 0.210 ObjectMonitor::ExitEpilog(Thread*,…)

Monitor Exit

JDK 9 Inclusive Time JDK8 Inclusive Time Method Name

2.752 0.400 ObjectMonitor::exit(bool, Thread*)
0.721 4.263 ObjectMonitor::ExitEpilog(Thread*,…)

Further Reading

70

http://openjdk.java.net/jeps/143
https://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html
https://wiki.openjdk.java.net/display/HotSpot/Synchronization
https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
JITWatch: https://github.com/AdoptOpenJDK/jitwatch/wiki/Instructions

Java Performance Book by Charlie Hunt and Binu John.

http://mail.openjdk.java.net/mailman/listinfo
hotspot-dev@openjdk.java.net
hotspot-gc-dev@openjdk.java.net

71

