
Load Test Like a Pro
Rob Harrop



Agenda

● Who am I?

● Why bother load testing?

● Load Testing Process

○ Designing load tests like a pro

○ Running load tests like a pro

○ Analysing load tests like a pro



Who Am I?

CEO @SKIPJAQ

Co-Founder @SpringSource



Why Bother?





Time is Money



5s latency 

reduction

7-12% increased 

conversion

Every 1s latency 

reduction

~2% increase in 

conversion

2.2s reduction in 

average latency

15.4% increase in 

download conversion



Load Testing is a Process



In Fact ...



Load Testing is a 

Continuous Process



Purpose Design

Glory!

Run

Analyse



● Once designed, a load test is good for multiple runs

● How many runs depends on:

○ How often you run

○ How often your code changes

○ How often your audience changes

● You must revisit the design as the landscape changes



Designing a Load Test



Load Test?



Step One: Define the purpose for testing

Step Two: Construct a high-quality test plan



Purpose



● What latency do I see with X concurrent users?

● How many concurrent users can I handle before latency 
exceeds Xms?

● How many concurrent users can I handle before my system 
is saturated?



● Average latency is mostly useless as a metric

● Later percentiles are better: 90th, 95th, 99th, 99.9th

● Max is a useful measure but is highly susceptible to 
measurement error

● For best results, consider whole distribution analysis

Measuring Latency



Measuring Latency



● You may legitimately want to answer multiple 
questions at once

● Consider a load test as a series of explorations up 
your load curve





Test Plan



Test Plan Model



● Traditional test plans are prescriptive and deterministic

● A great test model is descriptive and probabilistic



Prescriptive

GET /home GET /offices GET /jobs GET /team



Prescriptive

GET /home GET /offices GET /jobs GET /team

GET /home GET /offices GET /jobs GET /team

Thread 1:

Thread N:

...



This is where load 
tests go to die



Descriptive

GET /home

GET /offices

GET /team

GET /jobs

10%

30%

25%

5%



Each user is different



Transition Probabilities Capture 
This Difference



Descriptive

GET /home

GET /offices

GET /team

GET /jobs

10%

30%

25%

5%

1500ms

3000ms

1200ms

1400ms



Wait Times are 
A Thing™



● Wait times are typically non-zero

● Wait times are drawn from a distribution

● If you don’t know the distribution, exponential is a good 

fallback



● Google Analytics, MixPanel, Kiss Metrics

● Log files

● OpenZipkin, AWS X-Ray

● NewRelic, AppDynamics, Instana

Source Model Parameters From Real Data



● Snapshot and restore a data starting point for each test

● Assign/generate test data per virtual user

● Mutation workflows modify transition probabilities

● Assigned data varies based on workflow

Handling Data Mutation



Naive Mutation

GET /home

POST /signin

POST /signup

email: rob@skipjaq.com
password: correcthorsebatterystaple



Modulated Mutation

GET /home

POST /signin

POST /signup

email: rob@skipjaq.com
password: correcthorsebatterystaple

POST /signin

New?

90%

10%

email: henry@skipjaq.com
password: servantgaragefanchest



Recap

● Design with a purpose in mind

● Each user is different, capture this difference in your model

● Probabilistic models are better than prescriptive plans

● Production data is the best source of model parameters



Running a Load Test



Step One: Create a high-fidelity load test environment

Step Two: Provision enough load generation capacity

Step Three: Instrument the System Under Test

Step Four: Implement the test model for your load generator of choice

Step Five: Go!



● The closer to production the better

● Ideally, you’re already automating production provisioning

● Stubbing is acceptable, but you must do it well

The System Under Test



● Stubs must exhibit service times like real systems

● Service times and wait times are modelled the same way

● github.com/spectolabs/hoverfly

Hoverfly



● Laptops are not load generators

● Less is not more

● If in doubt, over provision

● Make sure that you’re tracking metrics from the load 

generators

Load Generators



● CPU, memory, I/O

● Usage, Saturation and Errors (USE)

● Background reading: Systems Performance by Brendan 

Gregg

Instrumentation



USE Metrics

Resource Utilisation Saturation Errors

CPU CPU % Run Queue Length ECC events/Failed CPUs

Memory Free/Used %
Anon. Paging/Thread 

Swapping
Failed mallocs?

Network I/O RX/TX throughput
NIC events 

(drops/overruns)

Disk I/O Busy % Wait Queue Length Device Errors



Implementing in JMeter



The Load Model

GET /home

GET /offices

GET /team

GET /jobs

20%

10%

20%

3500ms

3400ms

6000ms

GET 
/management

25% 5000ms



Let’s Go!

Warm Up
Run With 

X Users
Saturated? Analysis

X=X*Y



● Super low tech: check the results by hand

● Low tech: check a plot of the results

● High tech: fit a curve to the plot and check that

● Super high tech: take the derivative of the fitted curve

Detecting Saturation



Checking The Results

Load Level Run Time (ms) Total Requests Throughput Errors Error %

30 729400 11420 15.65670 0 0.00000000

40 752098 15256 20.28459 0 0.00000000

50 786117 19069 24.25720 0 0.00000000

60 798399 22971 28.77133 2 0.00870663

70 784018 26691 34.04386 0 0.00000000

80 819177 30459 37.18244 9 0.02954792

90 852584 34259 40.18255 0 0.00000000

100 825598 38103 46.15200 0 0.00000000

110 843654 41984 49.76448 0 0.00000000

120 871827 45751 52.47715 32 0.06994383

130 1024274 49520 48.34644 0 0.00000000

140 1165331 53468 45.88224 6 0.01122167

150 1354668 57177 42.20739 32 0.05596656



Checking a Plot



Fitting a Curve

Crosstalk 
overhead

Contention 
overhead

Relative capacity
Number of users



Fitting a Curve



Derivative of the Curve



Retrograde Scaling

Load Level Run Time (ms) Total Requests Throughput Errors Error %

30 729400 11420 15.65670 0 0.00000000

40 752098 15256 20.28459 0 0.00000000

50 786117 19069 24.25720 0 0.00000000

60 798399 22971 28.77133 2 0.00870663

70 784018 26691 34.04386 0 0.00000000

80 819177 30459 37.18244 9 0.02954792

90 852584 34259 40.18255 0 0.00000000

100 825598 38103 46.15200 0 0.00000000

110 843654 41984 49.76448 0 0.00000000

120 871827 45751 52.47715 32 0.06994383

130 1024274 49520 48.34644 0 0.00000000

140 1165331 53468 45.88224 6 0.01122167

150 1354668 57177 42.20739 32 0.05596656



Recap

● Testing to saturation provides you with plenty of data

● Detecting saturation is relatively simple from the outside

● Tracking internal performance metrics helps to track 
saturation



Analysing a Load Test



Step Zero: Learn R 

Step One: Exploratory analysis

Step Two: Answer your questions

Step Three: Link to production data



The Basic Histogram



Log Scale Histogram



Faceted Histogram



As a Timeseries



The Humble Table

Label 50%ile 90%ile 95%ile 99%ile 99.9%ile 100%ile

Home 94 116 176 852.01 1474 5599

Jobs 175 185 239.65 960.64 4719.171 7178

Management 176 181 220.2 1041.56 1490.656 1516

Offices 176 186.4 229.7 1129.76 1683.586 7190

Team 175 182 223.7 1082.86 1676.934 4647



QoS per Load Level

Load Level 50%ile 90%ile 95%ile 99%ile 99.9%ile 100%ile

60 95 177 179 409.60 1269.120 2137

70 95 177 179 541.10 1430.170 1817

80 95 177 179 619.00 1423.084 4906

90 95 178 180 843.00 1652.226 4529

100 95 178 181 870.96 1650.898 5248

110 95 178 182 934.17 1711.034 5543

120 96 178 186 952.50 1568.000 7190

130 97 180 286 1152.00 6118.215 9268

140 158 189 331 1241.33 5876.665 7608

150 169 198 318 1386.48 5150.648 9724



Labelled QoS

Label Load Level 50%ile 90%ile 95%ile 99%ile 99.9%ile 100%ile

Home 60 93 96.0 99.00 374.00 1187.021 1772

Home 70 93 96.0 101.00 463.03 1359.006 1817

Home 80 93 97.0 107.00 515.04 1422.002 4793

Home 90 93 97.0 122.00 705.04 1642.509 4478

Home 100 93 99.0 129.00 715.05 1671.005 5158

Home 110 93 100.0 140.00 864.00 1675.503 5485

Home 120 94 116.0 176.00 852.01 1474.000 5599

Home 130 94 176.0 181.00 1135.00 6176.000 9204

Home 140 94 178.0 187.00 1192.03 5879.001 7523

Home 150 96 180.0 201.00 1384.00 5658.000 9713



Recap

● Experiment with different visualisations

● A simple table might be the best visualisation you have

● Segment analysis by endpoint

● Understand your load in the context of your production 
metrics



In Summary



Load Test 

With Purpose



Load Test With 

Real User Models



Explore Your 

Load Curve



Analyse in the 

Context of Real Data



Performance Matters


