
BUILDING APPLICATIONS SECURELY
JAX London 2019

Eoin Woods
@eoinwoodz

Endava

INTRODUCTIONS

Eoin Woods

• CTO at Endava

• Career has spanned products and applications
• Architecture and software engineering
• Bull, Sybase, InterTrust
• BGI (Barclays) and UBS

• Long time security dabbler

• Increasingly concerned at cyber threat for “normal” systems

CONTEXT OF THIS TALK

CONTENT

• The Threat

• Software Security is Mitigation

• Principles for Secure Implementation

• Implementation Guidelines

• Summary

THE THREAT

SECURITY THREATS

•We need systems that are dependable in the face of
•Malice, Mistakes, Mischance

•People are sometimes bad, careless or just unlucky

•System security aims to mitigate these situations

TODAY’S THREAT LANDSCAPE

Today’s internal application is tomorrow’s “digital channel”

System interfaces on the Internet

Introspection of APIs

Attacks being ”weaponized”

DATA BREACHES: 2005 - 2007

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

DATA BREACHES: 2009 - 2012

DATA BREACHES: 2013 - 2016

DATA BREACHES: 2017 - 2019

THE IMPORTANCE OF APPLICATION SECURITY

•Verizon research security
incidents annually

• There are many root causes

•Applications are significant

• This study suggests that
about a quarter are
application related

https://enterprise.verizon.com/resources/reports/dbir

Applications
23%

Crimeware
6%

Cyber-Espionage
3%

Denial of Service
62%

Other
3%

Payment Cards
2%

Stolen Assets
1%

SOFTWARE SECURITY IS MITIGATION

ASPECTS OF SECURITY PRACTICE

SECURE SYSTEM OPERATION

SECURE APPLICATION
IMPLEMENTATION

SECURE APPLICATION DESIGN
SECURE INFRASTRUCTURE

DESIGN

SECURE INFRASTRUCTURE
DEPLOYMENT

SECURE APPLICATION IMPLEMENTATION

SECURE APPLICATION
IMPLEMENTATION

HOW YOU BUILD

WHAT YOU DO

HOW YOU VERIFY

S-SDLC

PRINCIPLES &
GUIDELINES

TESTING &
VALIDATION

Secure Design
Inputs

SECURITY IN THE DEVELOPMENT LIFECYCLE

Microsoft SDL OWASP SAMM
SAFECode

Fundamental
Practices

Building Security In
Maturity Model

MICROSOFT SECURE DEVELOPMENT LIFECYCLE

• Developed by Microsoft for their product groups
• 17 practices across the lifecycle
• Good resources available from Microsoft
• Needs to be applied to your development lifecycle

OWASP SOFTWARE ASSURANCE MATURITY MODEL

• Project from OWASP volunteers since 2008
• Governance, Construction, Verification & Operation
• Three key practice areas for each
• Maturity model rather than an SDLC

ADOPTING SECURITY PRACTICE

EXPERT APPLICATION SECURITY TEAM

CAPABLE APPLICATION SECURITY TEAM

INFORMED APPLICATION SECURITY TEAM

SECURITY AWARE TEAM

NO SECURITY PRACTICE

EXAMPLE CAPABILITY PLAN

PRINCIPLES FOR SECURE IMPLEMENTATION

SECURE IMPLEMENTATION PRINCIPLES

1. Security is everyone’s concern

2. Focus continually through the lifecycle

3. Good design improves security

4. Use proven tools and technologies

5. Automate security checking

6. Verify your software supply chain

7. Generic and technology specific concerns matter

SECURITY IS EVERYONE’S CONCERN

•A “concern“ not a ”feature”

•Needs team-wide awareness

•Avoid security being a
”specialist” problem

• Integrate security awareness
into normal dev tasks

SECURITY CHAMPIONS

• Security is everyone’s problem …
 but always someone else’s

• You need enthusiastic advocates
•People who will take ownership

• Self-selecting ”security champions”

• Invest, involve, promote, support
•don’t isolate them!

FOCUS CONTINUALLY THROUGH THE LIFECYCLE

• Cannot “test security in”

• Traditional security testing
delays deployment

•Need continual security
work through lifecycle
•analysis, design, dev, test, …

A WORD ON DEVSECOPS

“Security says no”

We’re all security engineers now

⇒ “Security” is another silo to integrate
 into the cross-functional delivery team

GOOD DESIGN IMPROVES SECURITY

• Careless design often
creates vulnerabilities

• Strong types, simple
mechanisms, well structured
code all aid security

• Simpler implementation is
easier to understand &
secure

GOOD DESIGN IMPROVES SECURITY

GOOD DESIGN IMPROVES SECURITY

Perfectly “reasonable” code … but with a potential security problem

… what happens if qty < 0 ?

GOOD DESIGN IMPROVES SECURITY

Example of DDD improving security ”for free”

USE PROVEN TOOLS AND TECHNOLOGY

• Software is hard to secure

• Security software is very
hard to secure

•Vulnerabilities emerge over
time (from attacks)

• Proven tools & technology
reduce production
vulnerabilities

AUTOMATE SECURITY CHECKING

• Some security checks can be
automated – SAST, DAST

• Consistency and efficiency

• Find (some) problems earlier

• Challenges include false positives
and responding effectively

• Only ever part of the solution

VERIFY YOUR SOFTWARE SUPPLY CHAIN

• 3rd party code is a possible risk –
often open source

• Tools exist for OSS security, risk
& compliance:
• BlackDuck, Whitesource,

Sonatype, Snyk

• Scan code to find dependencies

• Checks for known vulnerabilities

• Alerts and dashboards for
monitoring

GENERAL AND SPECIFIC CONCERNS MATTER

•Many security concerns
transcend technology
• Injection, logging, …

• Technical stacks also have
their specific weaknesses:
•C/C++ - memory management
• Java – reflection, serialisation
•Python – module loading

IMPLEMENTATION GUIDELINES

SECURE CODING GUIDELINES FOR JAVA

OWASP Secure
Coding Practices

Coding Practices

SECURE CODING GUIDELINES FOR JAVA

• These 4 standards overlap significantly

• Contain both Java-specific and general advice
•e.g. Java serialisation specifics and using “prepared” SQL statements

• Thorough documents needing time to understand and apply
•Oracle Java Security Guidelines contains 71 guidelines in 10 sections

• Something for your Security Champions to work through
•you need the practical minimal subset for your threats and risks

SECURE CODING GUIDELINES FOR JAVA

• Java is often thought of as ”secure” due to its memory model

• Some ”traditional” vulnerabilities are avoided
•Stack buffer overflows (“smashing the stack”)

•Other common vulnerabilities are still a problem
•XXE problems, SQL injection, pseudo–random numbers

•We’ll now look at a couple of Java-specific examples …

JAVA SPECIFIC EXAMPLES – RANDOM NUMBERS

Java has two random number generators:
 java.util.Random and java.security.SecureRandom

Guess which one isn’t random but most people use?

$> java com.artechra.RandomTest

Util Random Execution Time: 7

Secure Random Execution Time: 49

JAVA SPECIFIC EXAMPLES – XML ENTITY EXPANSION

Java has a lot of XML parsing, all of which expands XML
entities by default – also watch out for embedded parsers (e.g.
Spring MVC)

DocumentBuilderFactory, SAXParserFactory, DOM4J,
TransformerFactory, Validator, SchemaFactory, XMLReader, …

For comprehensive advice check out the OWASP cheatsheet:
https://cheatsheetseries.owasp.org/cheatsheets/

 XML_External_Entity_Prevention_Cheat_Sheet.html#java

JAVA SPECIFIC EXAMPLES – XML ENTITY EXPANSION

Example: XMLReader (a SAX based parser)

Not a set of options most of us keep in our head!

JAVA SPECIFIC EXAMPLES – HTML SANITISATION

Example: Using OWASP Java HTML Sanitiser library

Example of using proven 3rd party security software to solve a common problem: https://github.com/OWASP/java-html-sanitizer

SECURITY TESTING AND VALIDATION

• Like any other critical system quality application security needs to be tested early

and often – mix of automation and manual techniques
• Detailed description of testing is beyond this talk

• But we need to be aware of it so that we know someone is doing it

• Automated security testing: Static Analysis (SAST) and Dynamic Analysis (DAST)

• Automated functional testing: do the application security features work?

• Exploratory testing: fuzz testing and penetration testing

• Platform testing: testing application’s use of platform & configuration

Remember: security also needs to be tested from an infrastructure and operational perspective!

SUMMARY

SUMMARY (I)

•Much of the technology we use is inherently insecure
•Mitigation needs to be part of application development

•Attacking systems is becoming industrialised
•Digital transformation is providing more valuable, insecure targets

• Secure implementation is only part of an end-to-end

approach

SUMMARY (II)

• Three aspects to secure implementation
•HOW do you go about building the software? (SDLC)
•WHAT do you do to build the software? (Principles, Guidelines)
•HOW do you verify what you build? (Testing, Validation)

•We explored a set of principles
• Security is everyone’s concern
• Continual focus through the lifecycle
• Good design improves security
• Use proven tools and technologies
• Automate security checking

• Verify your software supply chain
• Generic and technology specific

concerns matter

SUMMARY (III)

•Both generic and language-specific concerns need to be

addressed when using Java
•A number of sets of guidelines exist … use them!
•SAFECode, OWASP Secure Coding Practices, Oracle Secure Java

Guidelines, CERT Coding Practices

•We haven’t explored security testing and validation
• critically important and another area to learn about
• involve specialist experts, particularly for manual aspects

SECURITY RELATED ORGANISATIONS

•OWASP - The Open Web Application Security Project
• Largely volunteer organisation, largely online
• Exists to improve the state of software security
• Research, tools, guidance, standards – “Top 10” lists
• Runs local chapters for face to face meetings

• SAFE Code
• Industry consortium of (mainly) software vendors
•Aims to improve practice across the industry
• Training and documentation

• “Fundamental Practices for Secure Software Development” guide

SECURITY RELATED ORGANISATIONS

•MITRE Corporation
•Common Vulnerabilities and Exposures (CVE)
•Common Weaknesses Enumeration (CWE)

•BSIMM – Building Security In Maturity Model
•Cigital (now Synopsys) initiative
•Survey to reflect community practice
• Led to report, conference and community
•Useful baseline of practice across the industry

• There are a lot of others too (IIC, CPNI, CERT, CIS, ISSA, …)

BOOKS & PUBLICATIONS

WHAT DO I DO NEXT?

Get started …

Work out where you are …

Get some people interested …

Work out what to improve next …

Improve that thing …

REPEAT !

Eoin Woods
Endava
@eoinwoodz
eoin.woods@endava.com

THANK YOU

53

