
Java Team

OpenJDK: In the New Age of 
Concurrent Garbage Collectors
HotSpot’s Regionalized GCs

Monica Beckwith
JVM Performance 
java-performance@Microsoft

@mon_beck

mailto:java-performance@microsoft.com


Agenda
Part 1 – Groundwork & Commonalities

Laying the Groundwork
Stop-the-world (STW) vs concurrent collection

Heap layout – regions and generations

Basic Commonalities
Copying collector – from and to spaces

Regions – occupied and free

Collection set and priority

Oct 8th, 2019



Agenda
Part 2 – Introduction & Differences

Introduction to G1, Shenandoah and Z GCs
Algorithm

Basic Differences
GC phases

Marking

Barriers

Compaction

Oct 8th, 2019



Groundwork : Stop-the 
world vs concurrent 
collections



Stop-the-world aka STW GC

Application Threads

GC Threads

Application Threads

Safepoint 
Requested

GC 
Completed

Application Threads GC Threads Application Threads

Safepoint 
Requested

GC 
Completed

Handshakes

Thread local handshakes vs Global

Time To Safepoint 
(TTSP)



Concurrent GC

Application Threads

GC Threads



Groundwork : Heap layout -
regions and generations



Heap Layout

Heap

Z GC

Shenandoah GC

Young Generation
G1 GCOld Generation



Commonalities : Copying 
collector – from and to 
spaces

From To



HeapFrom Space To Space
O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

GC ROOTS

THREAD 1 
STACK

THREAD N 
STACK

STATIC
VARIABLES

ANY JNI 
REFERENCES

Copying Collector aka Compacting Collector aka Evacuation



O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O

GC ROOTS

THREAD 1 
STACK

THREAD N 
STACK

O O
O O

O

STATIC
VARIABLES

ANY JNI 
REFERENCES

O
OO

O O

O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O

Copying Collector aka Compacting Collector aka Evacuation



Copying Collector aka Compacting Collector aka Evacuation

O O O O O O O O
O O O O O O O
O O O O O O O

O O O
O O O

O O



Commonalities : Regions 
– occupied and free



Occupied and Free Regions

O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

O O O O

O O O O

O O O O

• List of free regions
• In case of generational heap (like G1), the occupied regions could be young, old or humongous



Commonalities : Collection 
set and priority



Collection Priority and Collection Set

O O O O O O O O O O

O O O O O O O O O O

O O O O O O O O O O

O O O O

O O O O

O O O O

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OO
OO

OOOO

• Priority is to reclaim regions with most garbage
• The candidate regions for collection/reclamation/relocation are said to be in a collection set

• There are threshold based on how expensive a region can get and maximum regions to collect
• Incremental collection aka incremental compaction or partial compaction

• Usually needs a threshold that triggers the compaction
• Stops after the desired reclamation threshold or free-ness threshold is reached
• Doesn’t need to be stop-the-world



Introduction : G1, 
Shenandoah & Z - Algorithms



Algorithm and Other Considerations

Garbage Collectors G1 GC Shenandoah GC Z GC
Regionalized? Yes Yes Yes
Generational? Yes No No
Compaction? Yes, STW, Forwarding 

address in header
Yes, Concurrent, 
Forwarding Pointer

Yes, Concurrent, 
Colored Pointers

Target Pause Times? 200ms 10ms 10ms
Concurrent Marking Algorithm? SATB SATB Striped



Differences – G1



GC Phases of Marking and Compaction

G1 GC Gist
Initial Mark Mark objects directly reachable by the roots
Concurrent Root Region Scanning Since initial mark is piggy-backed on a young collection, the survivor 

regions need to be scanned
Concurrent Marking Snapshot-at-the-beginning (SATB) algorithm
Final Marking Drain SATB buffers; traverse unvisited live objects
Cleanup Identify and free completely free regions, sort regions based on liveness 

and expense
STW Compaction Move objects in collection set to “to” regions; free regions in collection 

set

•C. Hunt, M. Beckwith, P. Parhar, B. Rutisson. Java Performance Companion.



Concurrent Marking

Logical snapshot of the heap
SATB marking guarantees that all garbage objects that are present at the start of the 
concurrent marking phase will be identified by the snapshot 
But, application mutates its object graph

Any new objects are considered live
For any reference update, the mutator needs to log the previous value in a log queue

This is enabled by a pre-write barrier

•C. Hunt, M. Beckwith, P. Parhar, B. Rutisson. Java Performance Companion.
•https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf

Snapshot-at-the-beginning (SATB) Algorithm

https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf


Barriers
SATB Pre-Write Barrier

The pseudo-code of the pre-write barrier for an assignment of the form x.f := y is: 
if (marking_is_active) { 

pre_val := x.f; 
if (pre_val != NULL) { 

satb_enqueue(pre_val); 
}

} 

•C. Hunt, M. Beckwith, P. Parhar, B. Rutisson. Java Performance Companion.



Barriers
Post Write Barrier

Consider the following assignment:

object.field = some_other_object

G1 GC will issue a write barrier after the reference is updated, hence the name.

G1 GC filters the need for a barrier by way of a simple check as explained below:

(&object.field XOR &some_other_object) >> RegionSize

If the check evaluates to zero, a barrier is not needed.

If the check != zero, G1 GC enqueues the card in the update log buffer

https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf

•C. Hunt, M. Beckwith, P. Parhar, B. Rutisson. Java Performance Companion.

https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf


STW Compaction
Forwarding Pointer in Header

BodyHeader

A Java Object 

Pointer

Pointer to an 
InstanceKlassMark Word

b b GC workers compete to install the forwarding pointer

From source: 
• An InstanceKlass is the VM level representation of a Java class. It contains all information needed for at class at 

execution runtime.
• When marked the bits will be 11 



Differences – Z



GC Phases of Marking and Compaction

Z GC Gist
Initial Mark Mark objects directly reachable by the roots
Concurrent Marking Striping - GC threads walk the object graph and mark
Final Marking Traverse unvisited live objects; weak root cleaning
Concurrent Prepare for Compaction Identify collection set; reference processing
Start Compaction Handles roots into the collection set
Concurrent Compaction Move objects in collection set to “to” regions
Concurrent Remap (done with Concurrent Marking of 
next cycle since walks the object graph)

Fixup of all the pointers to now-moved objects

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf


Striping

Heap divided into logical stripes
GC threads work on their own stripe
Minimizes shared state

Load barrier to detect loads of non-marked object pointers
Concurrent reference processing
Thread local handshakes 

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf

Heap

GC 
Thread0

GC 
Thread1

GC 
Threadn

…

0 1 … n 0 1 … n 0 1 … n

Stripe0 Stripe1 Stripen

Colored Pointers
Concurrent Marking

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf


Barriers
Read Barrier – For References

Update a “bad” reference to a “good” reference
Can be self-healing/repairing barrier when updates the source memory location
Imposes a set of invariants –

“All visible loaded reference values will be safely “marked through” by the 
collector, if they haven’t been already.
All visible loaded reference values point to the current location of the safely 
accessible contents of the target objects they refer to.”

Tene, G.; Iyengar, B. & Wolf, M. (2011), C4: The Continuously Concurrent Compacting Collector, in 'Proceedings of the 
international symposium on Memory management' , ACM, New York, NY, USA , pp. 79--88 .

Loaded Reference Barrier



Example

Object o = obj.fieldA; // Loading an object reference from heap 

load_barrier(register_for(o), address_of(obj.fieldA)); 

if (o & bad_bit_mask) { 
slow_path(register_for(o), 
address_of(obj.fieldA)); } 



Example

mov 0x20(%rax), %rbx // Object o = obj.fieldA;

test %rbx, (0x16)%r15 // Bad color?

jnz slow_path // Yes -> Enter slow path and mark/relocate/remap, 

// adjust 0x20(%rax) and %rbx

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf


Core Concept
Colored Pointers

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf

Object Address
041

Unused

M
a
r
k
e
d
0

M
a
r
k
e
d
1

R
e
m
a
p
p
e
d

F
i
n
a
l
i
z
a
b
l
e

4663

Object is known to be 
marked?

Object is known to 
not be pointing into 
the relocation set?

Object is reachable 
only through a 

Finalizer?

Metadata stores in the unused bits of the 64 bit pointers

Virtual address mapping/tagging
Multi-mapping on x86-64
Hardware support on SPARC, aarch64

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf


Concurrent Compaction 

Load barrier to detect object pointers into the collection set

Can be self-healing

Off-heap forwarding tables enable to immediately release and reuse virtual 
and physical memory

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf

Off-Heap Forwarding Tables

http://cr.openjdk.java.net/~pliden/slides/ZGC-Jfokus-2018.pdf


Differences – Shenandoah



GC Phases of Marking and Compaction

https://wiki.openjdk.java.net/display/shenandoah/Main

Shenandoah GC Gist
Initial Mark Mark objects directly reachable by the roots
Concurrent Marking Snapshot-at-the-beginning (SATB) algorithm
Final Marking Drain SATB buffers; traverse unvisited live objects; identify 

collection set
Concurrent Cleanup Free completely free regions
Concurrent Compaction Move objects in collection set to “to” regions
Initial Update Reference Initialize the update reference phase
Concurrent Update Reference Scans the heap linearly; update any references to objects 

that have moved
Final Update Reference Update roots to point to to-region copies
Concurrent Cleanup Free regions in collection set

https://wiki.openjdk.java.net/display/shenandoah/Main


Concurrent Marking

•C. Hunt, M. Beckwith, P. Parhar, B. Rutisson. Java Performance Companion.
•https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf

Snapshot-at-the-beginning (SATB) Algorithm

https://www.jfokus.se/jfokus17/preso/Write-Barriers-in-Garbage-First-Garbage-Collector.pdf


Barriers
SATB Pre-Write Barrier - Recap

•C. Hunt, M. Beckwith, P. Parhar, B. Rutisson. Java Performance Companion.

Needed for all updates
Check if “marking-is-active”
SATB_enqueue the pre_val



Barriers
Read Barrier – For Concurrent Compaction

Here’s an assembly code snippet for reading a field: 
mov 0x10(%rsi),%rsi ; *getfield value 

Here’s what the snippet looks like with Shenandoah:
mov -0x8(%rsi),%rsi ; read of forwarding pointer at address object - 0x8 
mov 0x10(%rsi),%rsi ; *getfield value

*Flood, Christine & Kennke, Roman & Dinn, Andrew & Haley, Andrew & Westrelin, Roland. (2016). Shenandoah: An 
open-source concurrent compacting garbage collector for OpenJDK. 1-9. 10.1145/2972206.2972210. 



Barriers
Copying Write Barrier – For Concurrent Compaction

Needed for all updates to ensure to-space invariant
Check if “evacuation_in_progress”
Check if “in_collection_set” and “not_yet_copied”
CAS (fwd-ptr(obj), obj, copy)

*Flood, Christine & Kennke, Roman & Dinn, Andrew & Haley, Andrew & Westrelin, Roland. (2016). Shenandoah: An 
open-source concurrent compacting garbage collector for OpenJDK. 1-9. 10.1145/2972206.2972210. 



Superseded

Barriers
Read Barrier – For Concurrent Compaction

*Flood, Christine & Kennke, Roman & Dinn, Andrew & Haley, Andrew & Westrelin, Roland. (2016). Shenandoah: An 
open-source concurrent compacting garbage collector for OpenJDK. 1-9. 10.1145/2972206.2972210. 



Superseded

Barriers
Copying Write Barrier – For Concurrent Compaction

*Flood, Christine & Kennke, Roman & Dinn, Andrew & Haley, Andrew & Westrelin, Roland. (2016). Shenandoah: An 
open-source concurrent compacting garbage collector for OpenJDK. 1-9. 10.1145/2972206.2972210. 



Barriers
Loaded Reference Barrier - Recap

Tene, G.; Iyengar, B. & Wolf, M. (2011), C4: The Continuously Concurrent Compacting Collector, in 'Proceedings of the 
international symposium on Memory management' , ACM, New York, NY, USA , pp. 79--88 .

https://developers.redhat.com/blog/2019/06/27/shenandoah-gc-in-jdk-13-part-1-load-reference-barriers/

Ensure strong ‘to-space invariant’
Utilize barriers at reference load
Check if fast-path-possible; else do-slow-path

https://developers.redhat.com/blog/2019/06/27/shenandoah-gc-in-jdk-13-part-1-load-reference-barriers/


Concurrent Compaction
Brooks Style Indirection Pointer

BodyHeader

A Java Object 

Indirection 
Pointer

Forwarding pointer is placed before the object
Additional work of dereferencing per object



Superseded

Concurrent Compaction
Brooks Style Indirection Pointer

Forwarding pointer is placed before the object
Additional work of dereferencing per object



Concurrent Compaction
Forwarding Pointer in Header

BodyHeader

To Space Copy Java Object 

BodyForwarding 
Pointer

From Space Java Object 

X

https://developers.redhat.com/blog/2019/06/28/shenandoah-gc-in-jdk-13-part-2-eliminating-the-forward-pointer-
word/

https://developers.redhat.com/blog/2019/06/28/shenandoah-gc-in-jdk-13-part-2-eliminating-the-forward-pointer-word/


Performance!



Test Setup
Azure VM

Azure VM + Linux: 

Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz

16GB; 4 cores

https://adoptopenjdk.net/releases.html#x64_linux

https://adoptopenjdk.net/releases.html


Out-of-box* GC Performance
Throughput and Responsiveness

0%

20%

40%

60%

80%

100%

120%

G1 (200ms) G1 (50ms) Shenandoah Z

Throughput Responsiveness

*With Xmx=Xms



Further Reading

https://www.youtube.com/watch?v=VCeHkcwfF9Q

https://www.usenix.org/legacy/events/vee05/full_papers/p46-click.pdf

http://mail.openjdk.java.net/pipermail/zgc-dev/2017-
December/000047.html

http://hg.openjdk.java.net/zgc/zgc/file/ffab403eaf14/src/hotspot/share/gc
/z/zBarrier.cpp

https://wiki.openjdk.java.net/display/zgc/Main

https://www.youtube.com/watch?v=VCeHkcwfF9Q
https://www.usenix.org/legacy/events/vee05/full_papers/p46-click.pdf
http://mail.openjdk.java.net/pipermail/zgc-dev/2017-December/000047.html
http://hg.openjdk.java.net/zgc/zgc/file/ffab403eaf14/src/hotspot/share/gc/z/zBarrier.cpp
https://wiki.openjdk.java.net/display/zgc/Main


© Copyright Microsoft Corporation. All rights reserved.


