
1

Modern Garbage Collection
Tuning – Step by Step

Jack Shirazi

2Jack Shirazi

3Jack Shirazi

4Jack Shirazi

Choices

• OpenJDK has more than 120 GC tuning flags, 12 different
garbage collectors, multiple memory spaces, pools and
insanely varied GC logs

H e l l o

5Jack Shirazi

Options options options

• More options are

• Yay!!!

H e l l o

6Jack Shirazi

Options options options

• More options are

• Yay!!!

• Shoot me now

H e l l o

7Jack Shirazi

Options options options

• More options are

• Yay!!!

• Shoot me now

•Don’t Panic

H e l l o

8Jack Shirazi

Before
tuning

Some “Useful to
Know” GC things

9Jack Shirazi

The collector doesn't just collect garbage

• It also
• decides on the memory spaces and layout

• the size and layout of objects

• how allocation happens

• tracks objects over their life

• adds in JIT compilation codes

• re-layouts space and memory as needed to optimize (eg
compaction)

• So choosing the garbage collector affects everything!

U s e f u l t o k n o w

10Jack Shirazi

A lot of garbage collectors have 2 generations

• Usually called "young" and "old“

• Because they can use a quick but less accurate collector
in the young generation (might leave garbage in memory)

• One tuning consequence: Try to have objects collected in
the young generation

• Objects get "promoted" to the old generation where they
are "tenured"

U s e f u l t o k n o w

11Jack Shirazi

Collector words and phrases I

• Heap

• GC roots

• Mark-and-sweep

• Compaction

• Copying collector

• Concurrent vs parallel

• Concurrent vs stop-the-world

U s e f u l t o k n o w

1/2

12Jack Shirazi

Collector words and phrases II

• Region

• Pause

• Safepoint and pause time

• Promotion and tenuring and tenuring age

• Finalizers & References

• Metaspace and permspace

U s e f u l t o k n o w

2/2

13Jack Shirazi

OpenJDK Garbage Collectors

• For OpenJDK Java 8 (with backports), Java 11-15 there are
7 GC algorithms available with the HotSpot JVM and
another 6 in the OpenJ9 JVM - but one (Epsilon) is the same
in each, so 12 in total. From Java 14, one of these (CMS)
was removed.

• For all collectors the primary tuning option is the -Xmx
maximum heap size. Usually more is better for low pause
GCs. It's always worth trying out a different GC algorithm if
your application is not meeting its SLOs and the cause of
those SLO violations is significantly from GCs.

U s e f u l t o k n o w

14Jack Shirazi

OpenJDK Garbage Collectors

• Epsilon (-XX:+UseEpsilonGC/-Xgcpolicy:nogc) terminate
rather than GC

• Serial (-XX:+UseSerialGC) targeted at 1 vCPU

• Parallel (-XX:+UseParallelGC) targeted at throughput

• Throughput (-Xgcpolicy:optthruput) targeted at throughput

U s e f u l t o k n o w

No GC, Serial, Throughput

15Jack Shirazi

OpenJDK Garbage Collectors

• CMS (-XX:+UseConcMarkSweepGC) (gone from JDK14+)

• G1 (-XX:+UseG1GC)

• ZGC (-XX:+UseZGC)

• Shenandoah (-XX:+UseShenandoahGC)

• Balanced (-Xgcpolicy:balanced)

• Generational Concurrent (-Xgcpolicy:gencon)

• Metronome (-Xgcpolicy:metronome)

• Pause optimized (-Xgcpolicy:optavgpause)

U s e f u l t o k n o w

Targeted at pause time

16Jack Shirazi

The tuning
flow

17Jack Shirazi

Overview – 4 possible tuning steps

• 1. Adjust heap size

• 2. Choose an appropriate collector
• This talk is mainly here (+ a little on the next two sections)

• 3. Reduce the rate of object allocation and promotion
• a) Adjust young generation heap size

• b) Adjust tenuring threshold

• c) Change code

• 4. Fine tune the GC algorithm

G C t u n i n g f l o w

18Jack Shirazi

Turn on GC logging

• Negligible overhead

• -Xlog:gc*=info

• -Xlog:gc*=info,safepoint :file=<path>/logs/gc_%t.log:
tags,time,uptime,level:filecount=10,filesize=50M

• Java 8 Hotspot

• -XX:+PrintGCDetails -XX:+PrintGCDateStamps -
Xloggc:<path>/logs/gc_$(date +%Y_%m_%d-%H_%M).log -
XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -
XX:GCLogFileSize=50M -XX:+PrintGCApplicationStoppedTime

G C t u n i n g f l o w

19Jack Shirazi

Have SLOs (targets)

• "time is money" is an
expression

• But quite literal in this case

• Every millisecond tighter you
specify will cost you in
compute resources and
development time and devops
time

• Business SLOs, not GC ones!

G C t u n i n g f l o w

Screenshot from https://www.amazon.com/Far-
Side-Gary-Larson-discovers/dp/B07KGH621Q

Note thefarside.com is up too

https://www.amazon.com/Far-Side-Gary-Larson-discovers/dp/B07KGH621Q
https://www.amazon.com/Far-Side-Gary-Larson-discovers/dp/B07KGH621Q

20Jack Shirazi

The defaults

• Dictionary (noun)
• “default”

• Meaning not optimal

• (but sometimes good enough)

• Reasonable place to start

G C t u n i n g f l o w

21Jack Shirazi

Xmx

• Start with Xmx set at 2x your live set
• The live set is the stable size of the heap after GCs

• Then adjust as needed in response to SLOs
• Lower for

• Smaller footprint

• More frequent but shorter GCs

• Higher for
• Better pause times when using concurrent algorithms

G C t u n i n g f l o w

22Jack Shirazi

Eliminate Memory Leaks

• There is not much point in tuning the GC with a memory
leak, no matter what you do it will eventually get ugly then
die

• https://www.youtube.com/watch?v=JoQN4xoXY5Y

• Quickly Analysing A Heap Memory Leak by Jack Shirazi

G C t u n i n g f l o w

https://www.youtube.com/watch?v=JoQN4xoXY5Y

23Jack Shirazi

24Jack Shirazi

OS paging

• If your JVM pages during GC, the paging will dominate
everything

• 10x-100x slower

G C t u n i n g f l o w

25Jack Shirazi

SLO fails from CPU utilization

• Your CPU utilization is high and it’s because the garbage
collector threads are swamping the CPU when they kick in,
starving your application threads of desired CPU

• Recent JVMs do understand container limits, but even so …

• With 1 vCPU, use Serial GC

• Otherwise, scale down the number of GC threads to vCPU-1
(or what makes sense for your application and the SLOs)
• -Xgcthreads (OpenJ9)

• -XX:ParallelGCThreads and -XX:ConcGCThreads (Hotspot)

G C t u n i n g f l o w

26Jack Shirazi

SLO fails from startup time

• Startup time tends to be dominated by things other than
GC. But if you get startup delayed by one or more very long
GCs, just try a different collector

• Startup time is usually improved using class data sharing,
partial AOTC restoring previous compilations, and tiered
compilation (and making sure your app CAN start quickly).
• These capabilities are best in the latest JVMs as startup time has

become more of a priority in recent years

• Also try setting Xms to Xmx

G C t u n i n g f l o w

27Jack Shirazi

SLO fails from footprint

• Footprint tuning is usually simple: lower Xmx until it’s as low
as possible while still achieving your SLOs (and use
compressed oops if available)

• Some apps need a larger heap for spikes, but want the
heap as small as possible when not dealing with spikes. For
these, the best option is ParNew+SerialOld but that was
discontinued in Java 8. For Java 11+
• Serial will shrink best but the pauses may be unacceptable

• Gencon has a good go at shrinking the heap

• G1 with -XX:+UseStringDeduplication may give the best footprint

G C t u n i n g f l o w

28Jack Shirazi

SLO fails from throughput

• Throughput priority is usually straightforward, and parallel or
optthruput GCs will optimize your throughput

• However sometimes you prioritize throughput but still need
a reasonable pause time. It’s useful to know that actually
the primary goal of parallel GC is pause time – just it’s
normally unset so that throughput gets optimized
• -XX:MaxGCPauseMillis can be used, but you are directly

decreasing throughput if you do, so you need to choose carefully

• Or try gencon which attempts to balance pauses and
throughput

G C t u n i n g f l o w

29Jack Shirazi

SLO fails from latency (pause time)

• Most GCs target minimizing pause time; these pause time
targeting GCs use two strategies
• Collect garbage incrementally while stopping the application

• Collect garbage concurrently without stopping the application

• The smaller the pause time you want, the higher the
overhead the GC will cost

• Pause time tends to be limited by
• Compaction strategy

• Live set scanning time

G C t u n i n g f l o w

30Jack Shirazi

Other stuff

31Jack Shirazi

A couple of flags

• -XX:+DisableExplicitGC
• If the code says System.gc() or equivalent somewhere, that flag

will tell the GC to ignore the request

• Explicitly calling the GC from code is a bad practice and typically
causes suboptimal collection behaviour

• -XX:+PrintFlagsFinal
• Very useful when diagnosing, to see what the configuration

actually was rather than what someone thought it might have
been

M i s c e l l a n e o u s s t u f f

32Jack Shirazi

Monitoring pause times

• Because pauses can be from other than the GC, it’s useful
to log safepoint info too
• -Xlog:safepoint*… (Java 8: -XX:+PrintGCApplicationStoppedTime)

• Pause times in GC logs are straightforward

M i s c e l l a n e o u s s t u f f

33Jack Shirazi

Metaspace

• Metaspace stores the Java class metadata, the internal
representation of Java class

• Allocated in Non-Heap native memory and can increase its
size (up to what the OS provides)

• Limited by the JVM parameter "MaxMetaSpaceSize“

• Can cause a Full GC when it is full and needs expanding

• So size it avoid GCs

M i s c e l l a n e o u s s t u f f

34Jack Shirazi

Code 1/3

• If you’ve tried the tuning flow and still don’t achieve your
SLOs, first lookup the best GC you found and try any
obvious options (eg resizing the young gen, or starting GC
collections earlier). But ultimately, the code may need
tuning

• Start with looking for Finalizers and Reference processing in
the GC logs, and if these take significant time
• Eliminate Finalizers (this is a best practice anyway)

• Reduce Reference object usage

M i s c e l l a n e o u s s t u f f

35Jack Shirazi

Code 2/3

• Allocation rates limit how effective the GC can be. If you
are allocating too fast, the GC can’t keep up or, in the case
of the recently built GCs, will slow down the allocations to
let the GC keep up

• Either way, this impacts your app

• So reduce allocation rate by profiling allocations and
targeting the top allocators

• A rule of thumb is up to 300MB/sec allocation should be
okay for one of the GCs, 1GB/sec is too high

M i s c e l l a n e o u s s t u f f

36Jack Shirazi

Code 3/3

• Big objects (typically large arrays) are problematic for
garbage collectors, because they are expensive to move
around in memory. So you want to avoid making them
garbage
• Try to pre-size collections to the maximum they will reach

• Be aware of this cost for large collections that are temporary, they
may be worth targeting if all else has failed
• Some GCs will produce “humungous” object processing statistics to identify

if these are a problem

• Process streams directly, avoid intermediate copies of the stream
data, or at worst using a small reusable buffer to process the data

M i s c e l l a n e o u s s t u f f

37

Who Am I? Jack Shirazi

• In Reliability Engineering Team, Expedia Group

• Founder of JavaPerformanceTuning.com

•Author of Java Performance Tuning (O'Reilly)

• Published over 60 articles on Java Performance Tuning & a

monthly newsletter for over 15 years & around 10 000 tuning tips

