
©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

Spring Boot 3
Infographic

by Michael Simons

and more. This all goes hand in hand with the goal of
avoiding Java reflection. Starting from searching for
(JPA) entities, JAX-RS classes to configuring or recon-
figuring things at runtime the wiring of collaborators
(i.e. autowiring and injecting beans respectively). In
short, all the things that we as frameworks users with
dependency injection and configuration mechanisms
take for granted.

The approaches differ in the details. While the Quark-
us team decided to develop its own pre-processor for
Java with build tools, Micronaut relies on annotation
processing. Yes, it is the same annotation processing
that also takes place in Spring, but at compile time, not
at runtime. Quarkus generates bytecode, Micronaut
bytecode or source code, depending on the use case and
the target mode (JVM or AOT). See Micronaut Frame-
work Code Generation [3].

Why is this brief outlook important? Competition
stimulates business and Spring Boot 3.x and Spring
Framework 6.x are significantly influenced by the suc-
cess of the combinations GraalVM + Micronaut and
GraalVM + Quarkus in a positive way.

The minimum Java version and other dependencies
or: What does the upgrade from 2 to 3 mean?
Java 17
Spring Framework 6 and therefore, all Spring Boot 3 ap-
plications require Java 17. Spring Framework 5.3 and
Spring Boot 2.7 are the last versions that can be compiled
with Java 8 or 11. Of course, this does not mean that
libraries still compiled for Java 8 cannot be used
with Spring Boot 3. Generally, this isn’t a
problem. The problems of various librar-
ies and build tools with Java versions
beyond 8 have been solved by now.
Problems with the module system or
the stronger restrictions of unsafe class-

Basics
What exactly is Spring Boot?
The term “microservices framework” is often used
when talking about Spring Boot. This is only partially
true, because Spring Boot is suitable for small services
as well as for monolithic applications. These services or
applications can be pure web APIs or web applications,
command line programs or orchestrating applications.

At the end of the day, Spring Boot orchestrates the
Spring Framework. The Spring framework provides
application-level infrastructure, specifically dependen-
cy injection and aspect-oriented programming. These
building blocks are used to implement higher-level con-
cepts. Depending on the module, these include transac-
tions, security, and more.

Spring Boot starts a Spring container and configures –
depending on dependencies on the class path (see also:
What is a starter?) – other modules accordingly.

Are there alternatives?
Since the first version of this infographic was pub-
lished in late 2020, the Java world has not stood still.
Rather, the contrary is true. Quarkus [1] and Micro-
naut [2] are relevant alternatives. Both have the shared
goals of improving startup times and requiring fewer
resources. These goals are achieved on the JVM and in
the GraalVM Ahead-Of-Time (AOT) compiler. While
the differences on API view to Spring Boot were often
marginal (basically, it doesn’t matter if jakarta.inject or
Spring @Autowired annotations, Jakarta-RS, or Spring
WebMVC is used), Quarkus and Micronaut differed
drastically from Spring and Spring Boot.

Quarkus and Micronaut shift as much work as pos-
sible into the compile-time of a program to create as
closed a world as possible. Closed means that as much
as possible is known before the application starts, in-
cluding configuration, CDI beans, resources, entities,

– 1 –

https://quarkus.io/
https://micronaut.io/
https://micronaut.io/

©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

es (sun.misc.Unsafe, etc) have only a
few effects.

Nevertheless, there are strong
reasons to stay on Java 8. Spring
Framework 5.3 will be open source

until 2024 and receives commercial
support until 2026. However, these

reasons should not be found in the JDK,
Spring Framework 5.3 and the corresponding Spring
Boot 2.7 also work perfectly on JDK 11 and 17. A pos-
sible reason would be the upgrade to Hibernate 6.1,
which is also part of Spring Boot 3. There’s usually
much more to do there than just installing a new JDK.

Jakarta EE 9+
Spring Boot 3 completes the transition from Java EE de-
pendencies to corresponding Jakarta EE dependencies.
Affected dependencies include the Java Persistence API
(JPA), Java Servlets, Java Message Service (JMS), and
more.

The Spring team removed all dependencies from de-
pendency management that have not been migrated to
Jakarta EE by the authors. Naturally, this has conse-
quences. Applications will no longer compile and even
after manually adding the respective libraries (for ex-
ample, Apache ActiveMQ), they will no longer be au-
tomatically configured. Manual configuration isn’t a
solution either, since Java EE and Jakarta EE libraries
aren’t shareable.

Depending on how deep your application is with Java
EE annotations and dependencies, the effort to upgrade
varies between search-and-replace of package names or
searching for new dependencies with more or less mi-
gration effort.

@SpringBootApplication
It all starts with the @SpringBootApplication annota-
tion. It marks a single class as the central entry point
into a Spring Boot application.

@SpringBootApplication is a composite annotation
consisting of:

•	@SpringBootConfiguration (alias for @Configuration
with proxyBeanMethods = true).

•	@EnableAutoConfiguration
•	@ComponentScan

The last two annotations are the most important. They
turn on the search for Spring components (including
@Component, @Service, @Controller and others) and
the starters mechanism.

Three rules apply to @SpringBootApplication. The
first two should be considered hard rules:

1.	The class does not need any further annota-
tions. All other specialized configurations

should be located on corresponding
@Configuration classes.

2.	A class annotated with @Spring­
BootApplication should never be
located in the root package (i.e.
without a package declaration). In

this case, Spring would scan all classes starting from
the root and try to find classes with known annota-
tions.

3.	Although it is possible to define other methods
annotated with @Bean on this class, it should be
avoided for clarity. The class should be empty ex-
cept for the Main method.

Listing 1 shows what an “ideal” Spring Boot Main class
looks like.

Listing 1. Standard Spring Boot Main Class

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.
SpringBootApplication;

@SpringBootApplication
public class MyApplication {

 public static void main(String[] args) {
 SpringApplication.run(MyApplication.class, args);
 }
}

Version management and dependency
management
Version management and dependency management are
essential features of Spring Boot, even though they tend
to be extremely unobtrusive and often go unnoticed.
Spring Boot is available for both Maven and Gradle
based projects mechanisms that take care of this for ap-
plication developers. Gradle has been the default since
Spring Boot 3.

Developers can declare dependencies without speci-
fying versions. Managed dependencies are listed along
with their versions under Managed Dependency Coor-
dinates [4].

Spring Boot is automatically tested with these ver-
sions.

If in certain cases, a different version is mandatory, it
should not be declared manually. Instead, the properties
mechanism should be used to override this version. First,
the name of the corresponding property is determined in
the list of version properties [5] and set accordingly.

Maven
Define a property with an appropriate name and version:

<properties>
 <neo4j-java-driver.version>5.10.0</neo4j-java-driver.version>
</properties>

Gradle
Create a gradle.properties in the project and define
properties as follows:

neo4j-java-driver.version = 5.10.0

The Neo4j Java Driver, a library similar to a JDBC
driver, but for the Neo4j graph database [6] of the same
name, was used here as an example.

– 2 –

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-dependency-versions.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-dependency-versions.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#appendix.dependency-versions.properties
https://neo4j.com/

©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

What is a starter? (H3)
Starters are the second important main-
stay of Spring Boot. They usually consist
of a starter module and an autoconfiguration module.
The starter module provides all the necessary depend-
encies. The autoconfiguration module can configure the
Spring container, Spring modules, and other technolo-
gies depending on a wide variety of conditions.

These conditions include the presence or absence of
classes in the classpath, the presence or absence of beans
in the container, environment variables, properties and
more.

These conditions are defined by special @Confi­
guration classes that are loaded using the @Enable-
AutoConfiguration annotation named in @SpringBoot­
Application.

Starters are added to a project by declaring the ap-
propriate dependency. To find the corresponding con-
figuration classes without writing additional code or
scanning the entire classpath, a service loader mecha-
nism similar to Java Service Provider SPI is used.

To write the first (or even most further Spring Boot applica-
tions), you rarely need to write a separate starter. Never-
theless, it’s helpful to know how the mechanism works and
understand that the presence or absence of classes affects
configuration. Generally, it is recommended to use depend-
encies sparingly, both with starters and with other libraries.
The JDK itself provides functionality for many use cases in
current versions. You rarely need to blindly put Google Guava
on the classpath. The same goes for starters. I’ve seen too
many projects where it was blindly assumed that Spring
Data Neo4j also requires Spring Data JPA. The more starters
on the classpath, the harder it can be to investigate startup
errors.

Manual (specific) configuration
Properties
The Spring Boot manual lists over 1000 properties that
can be used to configure an application: Common
Application properties [7]. Of course, not all
properties are always available. They ap-
pear – apart from the core properties and
some others – only if the corresponding
starter is on the classpath. The configu-
ration over properties should be given
priority over programmatic configura-
tion. They’re flexible, well-documen-
ted and the underlying configuration
classes can react to changes. Properties
can come from files (application.properties
or application.yml), environment variables, or
program arguments. They can be linked to different
profiles, validated, and much more. Special data types
like URLs, memory sizes, lists, and more are converted
correctly.

@Configuration
Classes annotated with @Configura­
tion are Spring components that affect

the contents of the Spring container: Their methods are
annotated with @Bean, and the return values of the
methods also become a part of the Spring container as
a bean. By default, the beans are given the name of the
method.

These additional beans affect the auto-
matic configuration by starters. Start-
ers often check if certain beans are
already present. If so, starters can
be completely “switched off” or
only take care of part of their con-
figuration, since the user-specific
bean already does that.

This can sometimes lead to pro-
blems. In case of doubt, checking the
reference [8], especially the appendix Auto-
configuration Classes [9] helps.

Important features
Test Support
The starter at the coordinates org.springframework.
boot:spring-boot-starter-test brings all the necessary
dependencies to write tests with JUnit Jupiter, AssertJ
and Hamcrest.

Important annotations include:

•	@SpringBootTest starts a full Spring boot applica-
tion. If Spring web is on the classpath, a mock http
server is used by default.

•	@JsonTest configures only JSON processing support
(configuring the mapper like Spring Boot, etc.)

•	@WebMvcTest configures only the web layer, servic-
es and repositories need to be mocked. A MockMvc
instance is available to test the controllers.

•	@WebFluxTest configures the reactive weblayer, an
instance of the WebTestClient class is provided.

•	DataXXXTest configures the database layer for the
specified persistence layer. This can be JPA, JDBC,
jOOQ, Neo4j, Redis, Mongo or even LDAP. Tests
roll back transactions automatically. If needed, an

in-memory version of the respective store is used

All annotations mentioned are internally
annotated with @ExtendWith({Spring­
Extension.class}). Further JUnit anno-
tations are not needed for standard use
cases.

Starting from the annotated test
class, the package hierarchy is searched

upwards for a class annotated with @
SpringBootApplication. From there, con-

figuration is searched back down and select-
ed according to the test slice.

Tests can be customized by classes annotated with
@TestConfiguration. The advantage of @TestCon­
figuration is that it supplements the automatic Spring
boot configuration for tests and unlike @Configura­
tion classes in the test path, it replaces them.

If the test slices are used, additional aspects can be
added with extra @AutoConfigureXXX annotations
(for example @AutoConfigureWebTestClient).

– 3 –

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-auto-configuration-classes.html#auto-configuration-classes
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-auto-configuration-classes.html#auto-configuration-classes

©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

Testcontainers and @ServiceConnection
The examples shown below can be replicated with little effort
in an application generated in the Spring Initializr with the
link in [10].

Test containers are an open source framework that
enables lightweight, single-use instances of databases,
message brokers, web browsers, and more. Virtually
anything that can run inside a Docker container can
be used as a test container. While older Spring Boot
versions still needed manual configuration for service
connections like JDBC URLs, or the URL of the Neo4j
driver, this is no longer necessary in Spring Boot 3.1.

@ServiceConnection is a new annotation that pro-
vides access to various services along with a hierar-
chy of interfaces, starting with ConnectionDetails.
The annotation marks a method as a source for test
containers. The application context is able to derive a
matching instance of the ConnectionDetails interface
from the container. The root interface has no methods

and serves only as a marker. Subinterfac-
es such as JdbcConnectionDetails

or Neo4jConnectionDetails
provide the minimum neces-
sary information to provide
a corresponding connection.
Specific instances appear
at the next level, usually
based on properties or halt:

container connections. The
beauty is that we usually don’t

have to deal with it. Implemen-
tations are available for:

•	Cassandra
•	Couchbase
•	Elasticsearc
•	General relational databases via JDBC and some

specialized containers (including MariaDB, MySQl,
Oracle, PostgreSQL)

•	Kafka
•	MongoDB
•	Neo4j
•	RabbitMQ
•	Redpanda

In the test scope, the required general dependency is
org.springframework.boot:spring-boot-testcontain­
ers. Depending on the service, the corresponding test
container module must be included. We’ll stick with
Neo4j and use org.testcontainers:neo4j in the test
scope. Both dependencies are assumed in the following
example.

At development time
Let’s assume that we created additional classes around
our MyApplication class from Listing 1. For example,
a domain class annotated with @Node, a correspond-
ing Neo4j repository, various services and controllers.
We wanted to do Test-Driven-Development (TDD), but
unfortunately, something came up and we developed as

usual “on-the-fly”. In other words, we
start the application from the IDE and
use HTTPie [11] or something simi-
lar to call the interfaces. Wouldn’t
it be nice if we didn’t have to edit
application.properties or set envi-
ronment variables to connect the
application against a test instance of
our database?

The following class in the test scope
lets us do that. It provides an inner con-
figuration class – though it doesn’t have to be
annotated itself – that enriches the normal configura-
tion with the new with method of the SpringApplica-
tion class. It’s a delightfully explicit approach. The class
MyApplicationWithDevServices must be in the test
scope, but apart from that, it can be started normally
from the IDE.

import org.springframework.boot.SpringApplication;
import org.springframework.boot.testcontainers.service.connection.
� ServiceConnection;
import org.springframework.context.annotation.Bean;
import org.testcontainers.containers.Neo4jContainer;

public class MyApplicationWithDevServices {

 static class ContainerConfig {

 @Bean
 @ServiceConnection
 public Neo4jContainer<?> neo4jContainer() {
 return new Neo4jContainer<>("neo4j:5").withReuse(true);
 }
 }

 public static void main(String[] args) {
 SpringApplication.from(MyApplication::main)
 .with(ContainerConfig.class)
 .run(args);
 }
}

withReuse enables the reusability of test containers with the
same configuration, i.e. they are started only once

Additional, explicit configuration is used here

In the startup log, you’ll see that the Neo4j driver auto-
matically connects to the instance in the test container.
The application can be used directly.

When testing
To use a container in testing, you can
annotate the inner class Container­
Config accordingly:

import static org.assertj.core.api.Assertions.assertThat;

import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.boot.test.context.TestConfiguration;

– 4 –

1

1

2

2

https://httpie.io/

©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

import org.springframework.boot.testcontainers.service.connection.
� ServiceConnection;
import org.springframework.context.annotation.Bean;
import org.testcontainers.containers.Neo4jContainer;

@SpringBootTest
class MyApplicationTests {

 @TestConfiguration(
 proxyBeanMethods = false)
 public static class ContainerConfig {

 @Bean
 @ServiceConnection
 public Neo4jContainer<?> neo4jContainer() {
 return new Neo4jContainer<>("neo4j:5");
 }
 }

 @Test
 void repositoryIsConnectedAndUsable(
 @Autowired MovieRepository movieRepository
) {
 var movie = movieRepository.save(new Movie("Barbieheimer"));
 assertThat(movie.getId()).isNotNull();
 }
}

Of course, ContainerConfig can also reside in a top-lev-
el class, which is added to a @SpringBootTest via @Im­
port annotation or added to the application via .with
method, depending on the use case. There are a few
more variants, but they mostly use annotations from
the JUnit5 module of Testcontainers. It’s useful outside
of Spring applications, along with the test annotations
used. But it can quickly lead to a scenario where both
the test containers and Spring mechanisms are trying
to manage the lifecycle of containers. I recommend for
Spring Boot 3.1+ applications to use the above variant
based purely on Spring annotations.

Actuator
The term “Actuator” covers Spring Boots “Produc-
tion-Ready-Features”. These are metrics and health,
tracing, and auditing.

Spring Boots Actuator is defined by the dependency
org.springframework.boot:spring-boot-starter-actua­
tor.

All endpoints – except Shutdown are enabled by de-
fault and exposed via JMX with few exceptions when
JMX is enabled. To make them available via HTTP,
they must be enabled via management.endpoints.web.
exposure.exclude= or management.endpoints.web.ex­
posure.include= either by wildcard (*) or by name (see
“Endpoints” in [12]).

Endpoints are only secured if Spring Security is on the
classpath.

All web endpoints are available by default at /actua­
tor/ID, for example, /actuator/health. Some endpoints
may only provide a subset of information when no user
is logged in.

Metrics are available at /actuator/metrics.

Custom endpoints, health, and application informa-
tion can be provided. Starters for databases often con-
tribute additional information about connectivity. For
the above example, the response looks like this (Avail-
able at http localhost:8080/actuator/health)

Listing 2: Health information example

{
 "components": {
 "diskSpace": {
 "details": {
 "exists": true,
 "free": 766255230976,
 "path": "/Users/msimons/Projects/temp/javamaginfografik/.",
 "threshold": 10485760,
 "total": 994662584320
 },
 "status": "UP"
 },
 "neo4j": {
 "details": {
 "database": "neo4j",
 "edition": "community",
 "server": "5.8.0@localhost:50745"
 },
 "status": "UP"
 },
 "ping": {
 "status": "UP"
 }
 },
 "status": "UP"
}

Details are not available by default. They are returned if
Spring Security is on the classpath and an authorized user
makes the request or the application is configured accord-
ingly.

Logging
Logging can be configured uniformly for Slf4j, Log4j,
and other facades under the prefix logging. logging.file.
and logging.pattern.* define overlapping aspects,
under logging.level.LOGGERNAME the default
level of the corresponding logger can
be configured.

logging.group.GRUPPEN­
NAME=LIST OF LOGGERS
can be used to define own
logging groups, independ-
ent of the library used. This
group can be configured as
described above with logging.
level.GROUPNAME.

Profiles
Both properties files and configuration classes can be
provided with a profile. Properties files are named ap­
plication-MYPROFILE.properties and configuration
classes with @Profile("MYPROFILE"). When the ap-

– 5 –

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-endpoints

©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

plication is started, a start parameter (--spring.profiles.
active=MYPROFILE) or an entry in the default config-
uration under the spring.profiles.active key can be used
to specify which profiles are active.

Application packaging
Plugins are available for both Maven and Gradle that
are automatically included in the corresponding build
descriptor when the application is generated. These
plugins generate an executable jar or war file during the
package phase. This archive contains the actual applica-
tion code as well as all dependencies.

If this does not fit in the planned deployment scenar-
io, a different layout can be used. The corresponding
Maven or Gradle property is called spring-boot.repack-
age.layout. JAR, WAR, ZIP, DIR or NONE are avail-
able. DIR is a way to build layers for Docker images.

Since Spring Boot 2.3, optimized build packs are
available. These build packs codify various best prac-
tices for building Docker images for Spring Boot appli-
cations.

An image can be generated using an mvn spring-
boot:build-image and gradle bootBuildImage, respec-
tively. In this case, the new LAYERED_JAR layout is
used. It pushes libraries into their own Docker layer,
which tends to stay constant longer during develop-
ment, speeding up image creation and keeping deltas
small for new deployments.

Native applications with GraalVM
For several years, GraalVM

[13] has enabled the transla-
tion of Java programs into
native, operating system-
specified binaries called na-
tive images. This is usually

accompanied by a drastical-
ly improved startup perfor-

mance. Spring Boot 3 and Spring
Framework 6 and all Portfolio pro-

jects are compatible with GraalVM Na-
tive-Image. The only thing needed is the following

build plugin in the case of Maven:

Including the GraalVM build tool for Maven

<build>
 <plugins>
 <plugin>
 <groupId>org.graalvm.buildtools</groupId>
 <artifactId>native-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

A corresponding Gradle build descriptor looks like this:

plugins {
 id 'org.graalvm.buildtools.native' version '0.9.23'
}

The usual Spring Boot specific plugins are also required,
but have not been presented here for clarity.

The application is built for the current operating sys-
tem using mvn -Pnative native:compile and gradle na­
tiveCompile respectively. mvn -Pnative
spring-boot:build-image and gradle
bootBuildImage use buildpacks.

Technically, Spring supports
GraalVM. Source code is gen-
erated that statically describes
the application context. The
application is booted until the
bean definitions are available.
This information is used for
source code generation. Addition-
ally, various modules contain fixed
type hints that help GraalVM to make a
safe assumption about the “closed world” of the appli-
cation.

The application starts with ./target/javamaginfografik
in less than 0.5 seconds, opening a database connection
to Neo4j.

Misc
Lazy Initialization
Spring Boot applications can use lazy initialization
and start components as late as possible when needed.
Sometimes this speeds up the application’s start, but it
can also cause late errors. For instance, whenever beans
are configured incorrectly, but are not needed directly
at startup.

If you make sure that the application is configured
correctly, the feature can be enabled with for an appli-
cation with spring.main.lazy-initialization=true.

Developer Tools
Of course, Spring Boot is a “development tool”. But
there is also an optional Spring Boot module named org.
springframework.boot:spring-boot-devtools.

Developer tools change the default values of some
configuration properties at development time. For ex-
ample, most caches are disabled so after data or tem-
plates are changed, they become immediately visible.

The most noticeable feature is an automated restart
when classes are changed. All necessary parts of the ap-
plication affected by a change are completely restarted.
A delta in the configuration is logged.

This should only be declared as an optional depend-
ency. On a packaged application started with java -jar
the developer tools have no effect.

start.spring.io
Josh Long [14], Developer Advocate at VMWare Tanzu
(previously Pivotal) likes to call start.spring.io [15] the
best place on the Internet and a cure-all for various aches
and pains.

That may be an exaggeration, but Spring Initializr is
an exceedingly practical application. The basic key data
of a new service can be entered in a form:

•	Project coordinates
•	Name
•	Language (Java, Kotlin or Groovy)

– 6 –

https://www.graalvm.org/
https://twitter.com/starbuxman
https://start.spring.io/

©
 v

en
im

o/
S

hu
tt

er
st

oc
k.

co
m

– 7 –

•	Java version and Spring Boot version
•	And, of course, the dependencies

It creates a downloadable zip file containing a build de-
scriptor, a Listing 1, a basic test, Git Ignore, and a RE-
ADME with dependency and build system information.

The Spring initializer can also be used with cURL,
so that it can also be used in automated deployments.
Of course, the three major IDEs take advantage of this
functionality. In IDEA, NetBeans and Eclipse, new
Spring Boot projects can be generated directly from the
IDE via the initializr.

As of 2023, the application is no longer comparable
to the Initializr of 2015/2016. In the meantime, there is
a preview functionality, a “Share” link, and one more.

On top of that, the application is open source software
based on Spring Boot. Sources are available at spring-io
/ initializr [16], so the Initializr can be adapted to your
own purposes and used in your setups.

How-to Guides
In “How-to” guides [17], the
Spring Boot team publishes
answers to “How do I...”
questions. These range from
configuration to properties
to customization or selection
of the embedded web server to
database access, batch proces-
sing and much more.

Michael Simons is a father, husband, and athlete (the lat-
ter, perhaps only in his imagination). He is a Java Champi-
on, co-founder, and current director of Euregio JUG. Michael
is very involved with the Spring ecosystem both in Germany
through his German-language Spring Boot book, and also

internationally. Spring is a recurring topic on his blog. This won’t change an-
ytime soon, because Michael works as a software engineer at Neo4j and
deals with the Spring Data Module for the Neo4j graph database of the same
name.

Links
	 [1]	 https://quarkus.io/

	 [2]	 https://micronaut.io/

	 [3]	 https://micronaut.io/2023/03/21/micronaut-framework-code-generation/#:~:text=Micronaut%20Framework%20is%20an%20
implementation,where%20extensibility%2Fmodification%20is%20required

	 [4]	 https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-dependency-versions.html

	 [5]	 https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#appendix.dependency-versions.properties

	 [6]	 https://neo4j.com/

	 [7]	 https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html

	 [8]	 https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle

	 [9]	 https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-auto-configuration-classes.html#auto-configuration-classes

	[10]	 https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.1.2&packaging=jar&jvmVersion=17&groupId=com.
example&artifactId=javamaginfografik&name=javamaginfografik& description=Demo%20project%20for%20Spring%20Boot&packageName=com.
example.javamaginfografik&dependencies=data-neo4j,actuator,native,testcontainers

	[11]	 https://httpie.io/

	[12]	 https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-endpoints

	[13]	 https://www.graalvm.org/

	[14]	 https://twitter.com/starbuxman

	[15]	 https://start.spring.io/

	[16]	 https://github.com/spring-io/initializr/

[17]	 https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html

jaxlondon.com

https://github.com/spring-io/initializr/
https://github.com/spring-io/initializr/
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html
http://euregjug.eu/
https://quarkus.io/
https://micronaut.io/
https://micronaut.io/2023/03/21/micronaut-framework-code-generation/#:~:text=Micronaut%20Framework%20is%20an%20implementation,where%20extensibility%2Fmodification%20is%20required
https://micronaut.io/2023/03/21/micronaut-framework-code-generation/#:~:text=Micronaut%20Framework%20is%20an%20implementation,where%20extensibility%2Fmodification%20is%20required
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-dependency-versions.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#appendix.dependency-versions.properties
https://neo4j.com/
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-auto-configuration-classes.html#auto-configuration-classes
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.1.2&packaging=jar&jvmVersion=17&groupId=com.example&artifactId=javamaginfografik&name=javamaginfografik& description=Demo%20project%20for%20Spring%20Boot&packageName=com.example.
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.1.2&packaging=jar&jvmVersion=17&groupId=com.example&artifactId=javamaginfografik&name=javamaginfografik& description=Demo%20project%20for%20Spring%20Boot&packageName=com.example.
https://start.spring.io/#!type=maven-project&language=java&platformVersion=3.1.2&packaging=jar&jvmVersion=17&groupId=com.example&artifactId=javamaginfografik&name=javamaginfografik& description=Demo%20project%20for%20Spring%20Boot&packageName=com.example.
https://httpie.io/
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-endpoints
https://www.graalvm.org/
https://twitter.com/starbuxman
https://start.spring.io/
https://github.com/spring-io/initializr/
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html

